<table>
<thead>
<tr>
<th>Sponsor/NCT</th>
<th>Intervention</th>
<th>Inclusion/ Exclusion Criteria</th>
<th>Treatment Timing & Follow-up</th>
<th>Enrollment</th>
<th>Phase of Study</th>
<th>Primary Outcome Other Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOSpine N. Am Research Network, Reeve Foundation, Dept of Defense Rick Hansen Institute NCT01597518</td>
<td>Riluzole 2 x 100 mg by mouth or feeding tube the first 24 hours followed by 2 x 50 mg for the following 13 days after injury vs. placebo in acute SCI</td>
<td>18-75 yr Age C4-C8 AIS A, B, C</td>
<td>Acute SCI SCI≤12 hours F/U 6m</td>
<td>Began 10/2013 USA, Canada, Australia, New Zealand Multicenter 351 subjects</td>
<td>Phase 2/3 RCT Double-Blind</td>
<td>Efficacy/Safety Change in ISNCSCI total motor score from baseline to 6months of F/U</td>
<td>Multicenter Phase2/3 trial of riluzole vs. placebo for improving motor recovery in acute SCI</td>
</tr>
<tr>
<td>Eusol Biotech, Ltd NCT03229031</td>
<td>Intrathecal administration of ES 135 (rhFGF1) vs. placebo in patients who receive spinal surgery</td>
<td>18-65yr Age SCI level NS AIS A</td>
<td>time post SCI NS F/U 48wks</td>
<td>Began 3/2018 Taiwan 100 subjects</td>
<td>Phase 3 RCT Parallel Group Double Blind</td>
<td>ISNCSCI Motor Scores</td>
<td>Multicenter, Placebo-controlled Phase 3 RCT to Evaluate the Safety and Efficacy of intrathecal ES135 in Subjects with SCI receiving spinal surgery</td>
</tr>
<tr>
<td>Ohio State Univ. NCT02524379</td>
<td>12 doses of glyburide starting within 8 hours of SCI. Initial dose of 1.25 mg followed by 11 consecutive doses of 0.625 mg every 6 hrs over 72 hour period.</td>
<td>18-80yr Age C2-C8 AIS A, B, C</td>
<td>Acute SCI SCI≤8hrs F/U 1yr</td>
<td>Began 2/2017 Columbus, OH 10 subjects</td>
<td>Phase 1/2 Single Group Open Label</td>
<td>Adverse Events Pharmacokinetics Preliminary Efficacy (NS)</td>
<td>Single group early phase safety study of IV glyburide in acute SCI</td>
</tr>
<tr>
<td>Medical U. of Graz NCT03101982</td>
<td>Hyperbaric Oxygen (HBO) initiated within 24 hours of SCI given in 21 consecutive daily sessions at Medical University of Graz. Standard of Care Control subjects admitted to Paracelsus University Salzburg.</td>
<td>Age 16-70yrs Level NS AIS A, B, C, D</td>
<td>Acute SCI SCI≤24hrs F/U 1yr</td>
<td>Not yet begun Graz, Austria Salzburg, Austria 100 Subjects</td>
<td>Phase 2 Non-random Parallel Group Open Label</td>
<td>ISNCSCI Blood Testing MRI</td>
<td>Study of the effects of HBO on neurological impairment following acute SCI. 50 subjects in treatment group, 50 subjects in control group.</td>
</tr>
<tr>
<td>Hotchkiss Brain Inst U of Calgary NCT02232165</td>
<td>Medical management of blood pressure to target of mean arterial pressure ≥65mmHg vs. ≥85mmHg for 7 days following SCI</td>
<td>≥16yr Age C0-T12 AIS A, B, C No Central Cord</td>
<td>Acute SCI SCI≤12hr F/U 1yr</td>
<td>Began 3/2012 Calgary, Alberta San Antonio. TX 100 subjects</td>
<td>Phase 3 RCT Parallel Group Double Blind</td>
<td>ASIA motor score change ASIA sensory score change AIS improvement SF-36 SCIM, FIM</td>
<td>Non-inferiority study of hypertension avoidance vs. induced hypertension</td>
</tr>
<tr>
<td>Oregon Health and Science University Dept of Defense NCT02878850</td>
<td>Pharmacological management of blood pressure in persons with acute SCI comparing BP kept in a higher range (85-90mmHg), vs. BP kept in a normal range (MAP 65-70mmHg) for 7 days</td>
<td>≥18yr Age C0-T8 AIS A, B, C No Central Cord</td>
<td>Acute SCI Duration NS F/U 6m</td>
<td>Began 1/2017 USA Multicenter 152 subjects</td>
<td>Phase N/A RCT Parallel Group Single Blind</td>
<td>ASIA motor score change ASIA sensory score change SCIM III Pain Scores QoL Satisfaction Score Cardiovascular Adverse Events</td>
<td>Randomized Trial of Early Hemodynamic Management of Patients Following Acute Spinal Cord Injury, comparing 2 BP target ranges</td>
</tr>
<tr>
<td>Sponsor/NCT</td>
<td>Intervention</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Treatment Timing & Follow-up</td>
<td>Enrollment</td>
<td>Phase of Study</td>
<td>Primary Outcome Other Outcomes</td>
<td>Comments</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>------------------------------</td>
<td>------------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>St. Joseph's Hosp NCT02495545</td>
<td>CSF Drainage (target IT pressure 10mmHg) and elevation of Mean Arterial Pressure (MAP) with norepinephrine (goal 100-110 mmHg) vs. Elevation/maintenance of MAP alone with norepinephrine (goal 85-90mmHg) for 5d.</td>
<td>18-75yr Age C4-C8 A1 A, B, C</td>
<td>Acute SCI SCI≤24h F/U 180d</td>
<td>Began 10/2015 USA Arizona, Alabama 60 subjects</td>
<td>Phase 2B Parallel Group RCT Open Label</td>
<td>Change in IT Pressure ISNCSCI TMS AIS UEMS, LEMS, sensory scores SCIM Pain</td>
<td>RCT to study the effect of CSF drainage and BP support in acute SCI</td>
</tr>
<tr>
<td>University of British Columbia Rick Hansen Institute NCT01279811</td>
<td>Intravenous vasopressor drugs (norepinephrine or dopamine) initiated within 48 hours of injury and continued for 5 days with a daily 1 hour “crossover” protocol to compare the effectiveness of the two drugs</td>
<td>Age≥17yr C0-L1 A1 A, B, C</td>
<td>Acute SCI SCI≤48hrs F/U 1yr</td>
<td>Began 1/2011 North American Multicenter 100 subjects</td>
<td>Phase N/A Single Group Open Label</td>
<td>Spinal Cord Perfusion Pressure CSF biomarkers ISNCSCI Pain Questionnaire</td>
<td>Crossover study of the effect of vasopressor drugs to improve spinal cord perfusion pressure. Also collecting spinal fluid biomarkers to improve understanding of SCI and recovery.</td>
</tr>
<tr>
<td>University of British Columbia Rick Hansen Institute NCT03911492</td>
<td>Insertion of a lumbar intrathecal catheter to enable active management of Spinal Cord Perfusion Pressure (SCPP) ≥65mmHg over 7 days post-injury by the use of vasopressor medications and CSF drainage. CSF samples will also be collected for analysis of chemical indicators of injury severity.</td>
<td>Age≥17yr C0-T12 A1 A, B, C</td>
<td>Acute SCI SCI≤24hrs F/U 12m</td>
<td>Not yet begun Vancouver, BC 100 subjects</td>
<td>Phase N/A Single Group Open Label</td>
<td>ISNCSCI Biomarkers in CSF, Blood Spinal Cord Perfusion Pressure</td>
<td>Canadian-American Spinal Cord Perfusion Pressure and Biomarker Study (CASPER)</td>
</tr>
<tr>
<td>U of Zurich EMSCI.org Wings for Life Swiss Paraplegic Research NCT03935321</td>
<td>Six intrathecal injections (given by spinal tap) of 45mg of NG-101 (anti-Nogo antibody) or placebo, given over 30 days</td>
<td>Age 18-70yr C1-C8 A1 A, B, C, D UEMS<41/50</td>
<td>Subacute SCI4d≤SCI≤28d F/U 168d</td>
<td>Began 5/2019 European Multicenter 132 subjects</td>
<td>Phase 2 RCT Placebo Control Parallel Group Double Blind</td>
<td>UEMS ISNCSCI SCIM III WSCI GRASSP 10MWT, 6MWT Bladder Diary</td>
<td>Nogo Inhibition in Spinal Cord Injury (NISCI). Study to determine whether repeated IT bolus of NG-101 will improve neurological outcome in persons with subacute SCI</td>
</tr>
<tr>
<td>University of Miami US DoD NCT02991690</td>
<td>Modest (33°C) intravascular hyperthermia via Asius Icy CoolGuard® catheter inserted into the femoral vein. Patients will be cooled at a maximum rate (2-2.5°C/hr) until reaching target temp. (33°C) which will be maintained for 48hrs, then rewarmed at 0.1°C/hr until returned to normal temp. vs. Standard of Care control group</td>
<td>18-70yr Age Cervical SCI A1 A, B, C</td>
<td>Acute SCI SCI≤24h F/U 12m</td>
<td>Began 5/2017 USA Multicenter 120 subjects</td>
<td>Phase N/A Parallel Group RCT Open Label</td>
<td>AIS ASIA Motor Index FIM SCIM</td>
<td>Prospective Multi-center Case Controlled Study of Systemic Hypothermia in Acute Cervical SCI</td>
</tr>
<tr>
<td>Sponsor/NCT</td>
<td>Intervention</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Treatment Timing & Follow-up</td>
<td>Enrollment</td>
<td>Phase of Study</td>
<td>Primary Outcome Other Outcomes</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>AUVA Trauma Center Meidling NCT03399968</td>
<td>Extracorporeal shockwave therapy (ESWT) at the injury level and 5 segments up and down of the spinal cord paravertebrally left and right vs. sham ESWT by positioning of the therapy head at the injury level without application of shockwaves</td>
<td>Age≥18yr T2-T1 AIS A stable neuro 6m</td>
<td>Chronic SCI SCI≥1yr F/U 24wks</td>
<td>Began 3/2015 Austria 25 Subjects</td>
<td>Phase N/A RCT Sham Control Parallel Group Double Blind</td>
<td>Gait Analysis (Lokomat) ISNCSCI Tardieu Spasticity Test Trunk Control-functional reach SCIM</td>
<td>Extracorporeal Shockwave Therapy (ESWT) to Improve Function in Chronic ASIA-A Patients</td>
</tr>
<tr>
<td>Xijing Hospital NCT03643419</td>
<td>Near-infrared light irradiation of the spinal cord utilizing a laser therapeutic apparatus with optical fiber implanted at the time of decompressive spine surgery and laminectomy. Near-infrared light irradiation for 1 hour daily; number of light irradiation treatments NS.</td>
<td>Age 20-70yr Thoracic SCI AIS A, B, C</td>
<td>Acute SCI Time SCI NS F/U 12m</td>
<td>Not yet begun China 60 subjects</td>
<td>Phase N/A RCT Parallel Group Open Label</td>
<td>ASIA Motor Index MEP SSEP</td>
<td>RCT to observe the therapeutic effect of near-infrared light irradiation on the treatment of acute spinal cord injury in humans.</td>
</tr>
<tr>
<td>Molec Pt Ltd. NCT02537899</td>
<td>NeuroAiD (a “natural product” combining several Chinese herbal ingredients) given in oral capsule form for 6 months; combined with standard rehabilitation therapies</td>
<td>18-65yr Age AIS A, B</td>
<td>Acute/Subacute SCI 3d-4wk post SCI F/U 24m</td>
<td>Began 6/2015 Malaysia 30 subjects</td>
<td>Phase 4 Open Label Case Series</td>
<td>AIS ISNCSCI Motor/Sensory Scores SCIM SF-8 Adverse Events</td>
<td>Open label study of Chinese herbal supplement plus rehabilitation in acute/subacute SCI</td>
</tr>
<tr>
<td>Coordinación de Investigación en Salud, Mexico NCT03899584</td>
<td>Oral 4-aminoptyridine capsules (or placebo) beginning with 10mg, then in increasing doses until reaching maximum dose of 1mg/kg/day, for total of 30 weeks intervention period.</td>
<td>18-60yr Age C4-T12 AIS A</td>
<td>Chronic SCI SCI≥2yr F/U 7m</td>
<td>Not yet begun Mexico City 150 subjects</td>
<td>Phase 3 RCT Double Blind Placebo Controlled</td>
<td>ISNCSCI SCIM III SF-36 Bowel/Bladder Questionnaire Adverse Events</td>
<td>High Doses of 4-aminoptyridine in Clinically Complete Chronic Spinal Cord Injury Patients</td>
</tr>
<tr>
<td>Spaulding Rehab Hospital Wings for Life NCT02274116</td>
<td>Effect of acute intermittent hypoxia (AIH, breathing air with low oxygen) vs. Room air (breathing air with normal oxygen) placebo on Leg Function following SCI. Five 38 minute treatment sessions per week for 2 weeks.</td>
<td>18-75yr Age C4-T12 AIS C, D</td>
<td>Chronic SCI SCI≥12m F/U 4w</td>
<td>Began 10/2014 Atlanta 20 Subjects</td>
<td>Phase N/A RCT Double Blind Placebo Controlled Crossover</td>
<td>Change in over ground walking endurance and speed</td>
<td>Repetitive Exposure of Intermittent Hypoxia to Enhance Walking Recovery in Persons With Chronic Spinal Cord Injury</td>
</tr>
<tr>
<td>Spaulding Rehab Hospital NICHD NCT02323698</td>
<td>Effect of acute intermittent hypoxia (AIH, breathing air with low oxygen) with caffeine or placebo vs. Room air (breathing air with normal oxygen) sham with caffeine or placebo on Leg Function following SCI (Caffeine Sub-study)</td>
<td>18-75yr Age C2-T11 AIS C, D</td>
<td>Chronic SCI SCI≥12m F/U 2wks</td>
<td>Began 10/2014 Cambridge, MA, USA 20 Subjects</td>
<td>Phase 1/2 RCT Double Blinded Placebo Controlled Crossover</td>
<td>10MWT</td>
<td>Study on the Effects of Caffeine and Low Oxygen Therapy on Leg Function in Human Spinal Cord Injury</td>
</tr>
<tr>
<td>Sponsor/NCT</td>
<td>Intervention</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Treatment Timing & Follow-up</td>
<td>Enrollment</td>
<td>Phase of Study</td>
<td>Primary Outcome Other Outcomes</td>
<td>Comments</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>------------------------------</td>
<td>------------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Spaulding Rehab Hospital US Dept of Defense NCT02632422</td>
<td>10 sessions (5/wk for 2 wks) of daily acute intermittent hypoxia (dAIH) vs. daily room air (dSHAM); ambulatory subjects in both groups will also receive 60 minutes of walking practice at a frequency of 5 days each week for 2 weeks</td>
<td>18-70yr Age C4-T11 Some motor function below neuro level AIS A, B, C, D</td>
<td>Subacute SCI SCI for 2-4m F/U 2weeks</td>
<td>Began 10/2015 Atlanta, GA, Cambridge, MA 125 subjects</td>
<td>Phase N/A RCT Parallel Group Double Blind</td>
<td>TUG 6 minute walk test 10 meter walk test Pain, Spasticity Hypertension Autonomic Dysreflexia incidence</td>
<td>RCT of daily acute intermittent hypoxia vs. sham (room air) in non-ambulatory and ambulatory subacute incomplete SCI to determine effect on recovery of walking function</td>
</tr>
<tr>
<td>Spaulding Rehab Hospital NICHD Wings for Life NCT03774043</td>
<td>Effect of acute intermittent hypoxia (AIH, breathing air with low oxygen) on Leg Function following SCI. AIH with/without walking practice will be compared to AIH with/without ankle flexion torque practice</td>
<td>18-75yr Age C2-T11 AIS C, D</td>
<td>Chronic SCI SCI≥12m F/U 2weeks</td>
<td>Began 10/2014 Cambridge, MA, USA 44 Subjects</td>
<td>Phase N/A RCT Double Blinded Placebo Controlled Crossover</td>
<td>Walking endurance 2MWT/6MWT Muscle Strength @ ankle Walking speed 10MWT</td>
<td>Study to gain understanding of underlying mechanisms of AIH effect on Leg Function after SCI</td>
</tr>
<tr>
<td>Shirley Ryan Ability Lab NCT03774043</td>
<td>Acute intermittent hypoxia (AIH) 90 seconds of 9-11% O2, alternating with 90 seconds of 21% (normal) O2; repeated 15 times per session each (45 minute sessions) vs. Sham of 21% (room air) without intermittent hypoxia. Comparing single sessions (AIH vs. Sham) and two successive sessions (AIH vs. Sham).</td>
<td>Age 18-70yr C3-T1 AIS C, D</td>
<td>Chronic SCI SCI≥6m F/U 5hrs</td>
<td>Began 5/2016 Chicago 24 Subjects</td>
<td>Phase 1/2 RCT Sham Control Double Blind</td>
<td>Grip Strength Pinch Grip Box and Block Test 9 Hole Peg Test</td>
<td>Study of the impact of timing and dosage on the effects of AIH in persons with chronic SCI</td>
</tr>
<tr>
<td>Shirley Ryan AbilityLab NCT03262766</td>
<td>Acute intermittent hypoxia (AIH) 90 seconds of 9-10% O2, alternating with 90 seconds of 21% (normal) O2; repeated up to 18 times per session each (up to 45 minute sessions). Testing 4 combinations of therapy: 1) AIH alone; 2) AIH and upper limb training; 3) sham AIH and upper limb training; 4) sham AIH alone. Upper limb training with Armeo Spring robotic device. Daily sessions for 5 days.</td>
<td>Age 18-70yr C2-T2 AIS C, D</td>
<td>Chronic SCI SCI≥1yr F/U 6wks</td>
<td>Began 6/2017 Chicago 80 Subjects</td>
<td>Phase N/A RCT Sham Control Double Blind</td>
<td>Grip Strength Pinch Grip Box and Block Test 9 Hole Peg Test SCIM III GRASSP CUE</td>
<td>Daily Intermittent Hypoxia and Task-Specific Upper Limb Training in Persons with Chronic Incomplete SCI</td>
</tr>
<tr>
<td>Sponsor/NCT</td>
<td>Intervention</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Treatment Timing & Follow-up</td>
<td>Enrollment</td>
<td>Phase of Study</td>
<td>Primary Outcome Other Outcomes</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>-------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Shirley Ryan AbilityLab NCT03643770</td>
<td>Acute Intermittent Hypoxia (AIH)—short duration (<2 min) exposures to reduced oxygen levels (~10% inspired oxygen) alternating with exposure to air with normal oxygen levels (~21% inspired oxygen) vs. sham AIH, in combination with-or-without upper extremity training using Armeo Spring (gravity support exoskeleton), to evaluate changes in upper extremity function.</td>
<td>Age 18-75yr C3-T1 AIS NS Can open/close one hand without assistance</td>
<td>Chronic SCI SCI≥1yr F/U 4wks</td>
<td>Began 11/2018 Chicago 92 subjects</td>
<td>Early Phase 1 RCT Double Blind</td>
<td>GRASSP 9-hole peg test Grip Strength</td>
<td>Study of the effect of a novel intervention using daily AIH and high intensity training using the Armeo Spring device on UE function in persons with SCI</td>
</tr>
<tr>
<td>Shirley Ryan AbilityLab NCT03644277</td>
<td>Random assignment to one of 5 treatment groups: daily acute intermittent hypoxia therapy (AIH) vs. sham AIH, with-or-without massed practice UE training; with-or-without Rapael Glove (robotic rehabilitation device)-administered UE training. Study designed to determine the effectiveness of these interventions in improving UE function in persons with chronic incomplete SCI.</td>
<td>Age 18-75yr C2-T1 AIS NS At least one hand has some grasp ability (GRASSP Prehension Ability score≥2)</td>
<td>Chronic SCI SCI≥1yr F/U 3m</td>
<td>Began 7/2018 Chicago 125 Subjects</td>
<td>Phase N/A RCT Parallel Group Double Blind</td>
<td>GRASSP</td>
<td>Study of the effectiveness of daily AIH coupled with massed practice UE training or robotic UE training for improving UE function in persons with chronic SCI</td>
</tr>
<tr>
<td>University of Florida NCT03071393</td>
<td>Acute Intermittent Hypoxia (AIH) sessions of 15 brief (60-120 sec) exposures to low oxygen (9-15% inspired O2) alternating with 15 brief exposures of ambient room air (21% inspired O2). Two sessions at least 7 days apart: AIH or Sham (room air) randomly assigned with crossover. Inspired O2 delivered via Hypoxico Hyp-123 device. Study to determine AIH effects on motor function after SCI.</td>
<td>Age 18-65yr SCI C4-T12 AIS NS</td>
<td>Chronic SCI SCI≥6m F/U≤ 1week</td>
<td>Began 7/2017 Florida 35 Subjects</td>
<td>Phase N/A RCT Sham Control Crossover Double Blind</td>
<td>Neumuscular Recovery Scale Maximum Inspiratory Pressure Maximum Expiratory Pressure Forced Vital Capacity EMG TUG 10MWT 6MWT</td>
<td>Sham controlled crossover RCT of the effects of a single session of AIH on motor function in persons with chronic SCI</td>
</tr>
<tr>
<td>University of Florida NCT03833674</td>
<td>5 daily sessions of AIH (short repetitive episodes of low oxygen (9% O2) alternating with normal oxygen (21% O2)), or sham (normal 21% O2), or respiratory strength training, or AIH combined with respiratory strength training. Participants receive all different treatment regimens in randomly assigned order.</td>
<td>Age 18-65yr C3-T12 AIS B, C, D >20% impairment of max inspiratory or expiratory pressure</td>
<td>Chronic SCI SCI≥1yr F/U 60days</td>
<td>Not yet begun Florida 53 Subjects</td>
<td>Phase N/A RCT Sham Control Crossover Open Label</td>
<td>Maximal Inspiratory Pressure Maximal Expiratory Pressure</td>
<td>Study of whether the combination of AIH and respiratory strength training improves breathing function more than either approach alone.</td>
</tr>
<tr>
<td>Sponsor/NCT</td>
<td>Intervention</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Treatment Timing & Follow-up</td>
<td>Enrollment</td>
<td>Phase of Study</td>
<td>Primary Outcome</td>
<td>Other Outcomes</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>------------------------------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Univ. of Miami US Dept of Educ. NCT03433599</td>
<td>Acute Intermittent Hypoxia (AIH) sessions of brief (60-90 sec) exposures to low oxygen (9-10% inspired O2) alternating with brief (60-90 sec) exposures of ambient room air vs. sham (Room Air) in combination with training either with Exoskeleton Rapael glove or standard UE Rehab training or no training</td>
<td>Age 18-70yr SCI C3-T1 AIS C, D</td>
<td>Chronic SCI SCI>0m F/U 12wks</td>
<td>Began 8/2018 Miami 125 Subjects</td>
<td>Phase N/A</td>
<td>RCT</td>
<td>Parallel Group</td>
</tr>
<tr>
<td>VA Office of R&D Univ. of Miami NCT03780829</td>
<td>Repetitive AIH vs. Sham AIH combined with exercise (bimanual massed practice training) and/or the drug D-cycloserine or sham drug</td>
<td>Age 18-80yr SCI C8 and above Veteran Finger Flex and Abd strength 1-4 Grasp small objects; precision index to thumb</td>
<td>Chronic SCI SCI2yr F/U 12wks</td>
<td>Not yet begun Miami 175 Subjects</td>
<td>Phase 1</td>
<td>RCT</td>
<td>Crossover</td>
</tr>
<tr>
<td>Wroclaw Med Univ Nicholls Spinal Injury Foundation NCT03933072</td>
<td>Autologous olfactory ensheathing cells (OECs) and olfactory nerve fibroblasts (ONFs) obtained from patient's olfactory bulb; autologous sural nerve harvest. Preparation of Glial Neuropatch. Microsurgical reconstruction of the transected spinal cord with Glial Neuropatch-nerve bridges</td>
<td>16-65yr Age C5-T10 AIS A Complete transsection of cord In active rehab</td>
<td>Time post SCI NS F/U 2-3yr</td>
<td>Began 3/2016 Wroclaw, Poland 2 subjects</td>
<td>Phase 1-2</td>
<td>Open Label</td>
<td>Single Group</td>
</tr>
<tr>
<td>Neuralstem, Inc. NCT01772810</td>
<td>Surgical injection of Neural Stem Cells into the area of SCI; 6 injections per patient; two dose cohorts 100,000 cells in 10μL/injection and 200,000 cells in 10μL/injection; patients receive immunosuppressive treatment for 3 months after implant</td>
<td>18-65yr Age Grp A: T2-T12 Grp B: C5-C7 AIS A Lives ≤500mni of Study Site</td>
<td>Chronic SCI 1yr≤SCI≤2yr F/U 5yr</td>
<td>Began 8/2014 San Diego, CA 8 subjects; now enrolling Grp B subjects</td>
<td>Phase 1</td>
<td>Open Label</td>
<td>Safety Incidence of Adverse Events Graft Survival (MRI evidence) Immune Suppress Effectiveness ISNCSCI exam</td>
</tr>
<tr>
<td>Neuroplast NCT03935724</td>
<td>Autologous Bone Marrow-derived stem cells (Neuro-Cells) or placebo, delivered intrathecally via lumbar puncture, 6-8 weeks after SCI. Subjects initially receiving placebo receive Neuro-Cells 32-34 weeks after SCI.</td>
<td>18-65yr Age C6-T12 AIS A, B, C</td>
<td>Subacute SCI SCI 6-8wks F/U 12m</td>
<td>Not yet begun Denmark, Spain 70 subjects</td>
<td>Phase 2-3</td>
<td>RCT</td>
<td>Placebo Controlled Double Blind</td>
</tr>
<tr>
<td>Sponsor/NCT</td>
<td>Intervention</td>
<td>Inclusion/Exclusion Criteria</td>
<td>Treatment Timing & Follow-up</td>
<td>Enrollment</td>
<td>Phase of Study</td>
<td>Primary Outcome Other Outcomes</td>
<td>Comments</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>---------------</td>
<td>-------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Hospital Sao Rafael NCT02574572</td>
<td>Autologous bone marrow mesenchymal stem cell transplantation in patients with cervical chronic and complete spinal cord injury (location n.s.)</td>
<td>18-65yr Age C5-C7 AIS A</td>
<td>Chronic SCI≥12m F/U 12m</td>
<td>Began 10/2015 Brazil 10 subjects</td>
<td>Phase 1 Single Group Open Label</td>
<td>AE assessed by spinal cord MRI AIS Sensory Mapping Neuropathic Pain</td>
<td>Autologous Mesenchymal Stem Cells Transplantation in Subjects With Cervical Chronic Complete SCI</td>
</tr>
<tr>
<td>Hospital Sao Rafael NCT02574585</td>
<td>Autologous mesenchymal stem cells transplantation. Two percutaneous injections (location n.s.) of mesenchymal stem cells, with a 3-month interval between the injections; vs. randomly assigned control group without any specific intervention</td>
<td>18-65yr Age T1-L2 AIS A</td>
<td>Chronic SCI≥12m F/U 12m</td>
<td>Not yet recruit Brazil 40 subjects</td>
<td>Phase 2 RCT Parallel Group Open Label</td>
<td>AE assessed by spinal cord MRI AIS Sensory Mapping Neuropathic Pain</td>
<td>RCT for the evaluation of autologous mesenchymal stem cell transplantation in thoracolumbar chronic complete SCI</td>
</tr>
<tr>
<td>Stem Cells Arabia NCT02687672</td>
<td>Transplantation into the spinal cord of autologous bone marrow- vs. leukapheresis (from a sample of white blood cells)-derived stem cells.</td>
<td>5-50yr Age Level/AIS n.s.</td>
<td>Chronic SCI 6m≤SCI≤60m F/U 60m</td>
<td>Began 1/2016 Jordan 50 Subjects</td>
<td>Phase 1/2 RCT Parallel Group Open Label</td>
<td>ISNCSCI Urine & Stool Incontinence QoL Independence Questionnaire Safety (n.s.)</td>
<td>Comparing transplantation of purified autologous bone marrow- vs. leukapheresis-derived stem cells for patients with chronic SCI</td>
</tr>
<tr>
<td>Pharmacell Co. Ltd. NCT01676441</td>
<td>Bone Marrow-derived autologous mesenchymal stem cells (cellgram-spin) surgically transplanted intrathecally and directly into spinal cord injury following laminectomy; Implant followed by 4 weeks of rehabilitation</td>
<td>16-65yr Age Cervical level AIS B Stable neuro after 1 m rehab</td>
<td>Chronic SCI SCI≥12m F/U 12m after surgery</td>
<td>Began 8/2008 S. Korea 32 subjects</td>
<td>Phase 2/3 Single Group Open Label</td>
<td>ISNCSCI ASIA Motor Score ASIA Sensory Score EMG, Neurophysiology MRI Adverse events</td>
<td>Ongoing study of autologous BM derived Stem Cells followed by 4 weeks of rehabilitation</td>
</tr>
<tr>
<td>Mayo Clinic NCT03308565</td>
<td>Single IT L4-5 level administration of 100 million autologous adipose-derived mesenchymal stem cells. The patient's adipose tissue is harvested from small abdominal or thigh incisions, culture-expanded for 4-6 weeks, then transplanted via IT injection.</td>
<td>Age 218yrs SCI Level NS AIS A, B</td>
<td>Subacute-Chronic SCI≥2wk to 1yr F/U 96wks</td>
<td>Began 12/2017 Rochester, MN 10 subjects</td>
<td>Phase 1 Single Group Open Label</td>
<td>Safety/Adverse Events AIS MEP, SSEP MRI Lab Hematology/Chemistry</td>
<td>Autologous Adipose Derived Mesenchymal Stem Cells in the Treatment of Paralysis Due to Traumatic Spinal Cord Injury</td>
</tr>
<tr>
<td>Ferrer Internacional NCT02917291</td>
<td>Single intramedullary injection of FABI17-HC, a medicinal product containing human allogeneic adipose-derived adult mesenchymal stem cells in either 20 million or 40 million cell doses; Phase 2 includes untreated control group; treatment group receives highest tolerated dose from Phase 1</td>
<td>18-65yr Age T1-L2 (Phase 1) T1-L2 (Phase 2) AIS A (Phase 1), A, B (Phase 2) ZPP no lower than T12</td>
<td>Acute SCI Phase 1: 72-120hr Phase 2: 24-72hr F/U 12m</td>
<td>Began 12/2016 Spain 46 subjects</td>
<td>Phase 1/2 Randomized Parallel Group Double Blind</td>
<td>Safety/Adverse Events ISNCSCI SCIIM III SSEP MEP</td>
<td>Study of medicinal product containing allogeneic adipose-derived adult mesenchymal stem cells pulsed with H2O2, injected into SCI during clinical decompressive spine surgery</td>
</tr>
</tbody>
</table>
Current SCI Clinical Trials of Drug, Cell, and Surgical Interventions to Improve Neurological and Related Functional Outcomes

Sponsor/NCT
Intervention
Inclusion/Exclusion Criteria
Treatment Timing & Follow-up
Enrollment
Phase of Study
Primary Outcome/Other Outcomes
Comments

BioArctic Neuroscience AB
NCT02490501
Surgical implantation of SC0806 (a biodegradable device with heparin-activated FGF1 and peripheral nerve implants); both surgical implant and control groups receive rehabilitation (walking training). Control subjects will be offered SC0806 treatment after completion of their rehabilitation.
18-65yr Age
T2-T11
AIS A
Chronic SCI
4m-10yrs post SCI
F/U 18m
Began 6/2015
Sweden
27 subjects
Phase 1/2
Parallel Group RCT
Safety/Adverse Events
MEP improvement
Rehabilitation-controlled RCT studying SC0806 (a biodegradable device with heparin-activated FGF1 and nerve implants)

Sun Yat-Sen Univ. 3rd Affil. Hospital
NCT03521336
IT administration of 1x10^6 umbilical cord mesenchymal stem cells per kg, every month for 4 months vs. sham IT administration of saline every month for 4 months
18-65yr Age
SCI Level NS
AIS A, B, C, D
Subacute SCI
2w≤SCI≤12m
F/U 12m
Began 1/2018
China
84 subjects
Phase 2
RCT
Parallel Group Single Blind
ISNCSCI
IANR-SCIRFS
EMG Change in Residual Urine (US)
Adverse Events
IT transplanation of umbilical cord mesenchymal stem cells in patients with sub-acute SCI

InVivo Therapeutics
NCT03762655
Surgical implantation of a poly(lactic-co-glycolic acid)-b-poly(L-lysine) Neuro-Spinal Scaffold™ into the acutely injured spinal cord (“Scaffold Arm”) vs. Standard of Care open spine surgery (“Comparator Arm”)
16-70yr Age
SCI T2-T12
AIS A
Plan for standard-of-care open spine surgery 57 days after SCI
Acute SCI
SCI≤7d
F/U 24m
Began 1/2019
USA multicenter
35 participants
N/A
(HDE Trial)
RCT
Parallel Group Single Blind (participant)
AIS
NLI Bowel/Bladder/Sexual Function MRI
ISNCSCI MRI
RCT of Neuro-Spinal Scaffold™ for Safety and Neurologic Recovery in Subjects with Complete Thoracic AIS A SCI

Chinese Acad. SCI Univ. of CAPF Soochow University
NCT02510365
Collagen scaffold transplanted into spinal cord after acute spinal cord injury
18-65yr Age
C5-T12
AIS A
Acute SCI
SCI≤24d
F/U 12m
Began 4/2015
Soochow, and Tianjin, China
20 subjects
Phase 1
Single Group Open Label
AIS
SSEP, MEP
Adverse Events
Functional Neural Regeneration Collagen Scaffold Transplantation in Complete Acute SCI

Chinese Acad. of Sci University of CAPF
NCT02688049
Surgical implantation of NeuroRegen scaffold with either 10^6 mesenchymal stem cells or 10^7 neural stem cells into the spinal cord in patients with chronic spinal cord injury. All patients have surgical removal of spinal cord scar tissue, and have post-operative comprehensive rehabilitation
18-65yr Age
C5-T12
AIS A
Chronic SCI
Duration NS
F/U 24m
Began 1/2016
Enrolling by Invitation
Tianjin, China
30 Subjects
Phase 1/2
RCT
Parallel Group Double Blind
AIS
SSEP, MEP, FIM MRI Bladder/Bowel Function Safety/Tolerability/AE
Study to assess the efficacy & safety of mesenchymal stem cells or neural stem cells combined with NeuroRegen scaffold transplantation in patients with chronic SCI
<table>
<thead>
<tr>
<th>Sponsor/NCT</th>
<th>Intervention</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Treatment Timing & Follow-up</th>
<th>Enrollment</th>
<th>Phase of Study</th>
<th>Primary Outcome Other Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese Acad. of Sci University of CAPF NCT02352077</td>
<td>Surgical implantation of NeuroRegen scaffold with Bone Marrow Mononuclear Cells or Mesenchymal Stem Cells after localized SCI scarring excised; followed by comprehensive rehabilitation, psychological and nutritional treatment</td>
<td>18-65yr Age C5-T12 AIS A</td>
<td>Chronic SCI Duration NS F/U 12m</td>
<td>Began 1/2015 China 30 Subjects Enrolling by Invitation Only</td>
<td>Phase 1 Single Group Open Label</td>
<td>Safety/Tolerability/AE AIS SSEP/MEP FIM MRI Bladder/Bowel Function</td>
<td>NeuroRegen Scaffold™ With Bone Marrow Mononuclear Cells or Mesenchymal Stem Cells for Chronic Spinal Cord Injury Repair—enrolling by invitation only</td>
</tr>
<tr>
<td>Chinese Acad. of Sci PLA Gen Hospital NCT02688062</td>
<td>NeuroRegen Scaffold™ with bone marrow mononuclear cell transplantation vs. intradural decompression and adhesiolysis in persons with chronic SCI</td>
<td>18-60yr Age Thoracic Level AIS A</td>
<td>Chronic SCI Duration NS F/U 24m</td>
<td>Began 1/2016 Beijing, China 22 subjects</td>
<td>Phase 1/2 RCT Parallel Group Double Blind</td>
<td>AIS SSEP/MEP FIM MRI Bladder/Bowel Function Safety/Tolerability/AE</td>
<td>RCT comparing NeuroRegen scaffold with BM mononuclear cells vs. intradural decompression with lysis of adhesions</td>
</tr>
<tr>
<td>Chinese Academy of Sciences University of CAPF NCT03966794</td>
<td>Functional neural regeneration collagen scaffold transplantation combined with epidural spinal stimulation (ESS). Three groups: 1) participants with prior functional scaffold implant with motor recovery receive ESS, 2) newly injured acute AIS A SCI receive scaffold and ESS, 3) chronic AIS A SCI receive scaffold and ESS</td>
<td>18-60yr Age C4-L1 AIS A</td>
<td>Acute/Subacute SCI≤14d Chronic SCI SCI≥6m F/U 24m</td>
<td>Began 5/2019 Tianjin, China 9 subjects</td>
<td>Phase 1/2 Non-random Parallel Group Open Label</td>
<td>AIS SSEP/MEP FIM MRI Bladder/Bowel Function Safety/Tolerability/AE</td>
<td>Study of the effect of adding epidural stimulation to implanted functional scaffold; combination intervention of scaffold and epidural spinal cord stimulation</td>
</tr>
<tr>
<td>Washington U US Department of Defense NCT01714349</td>
<td>Brachialis branch to anterior interosseous nerve transfer</td>
<td>18-65yr Age Cervical SCI; No hand function; AIS A, B, C or central cord syndrome; 6m≤SCI≤48m</td>
<td>Chronic SCI 6m<SCI<48m F/U 36m</td>
<td>Began 10/2012 St. Louis, MO 20 subjects</td>
<td>Phase N/A Single Group Open Label</td>
<td>Upper Extremity Strength (Manual Muscle Testing) DASH scale SF-36 Complication rates</td>
<td>Study of peripheral nerve transfer for improving UE strength in patients with tetraplegia/no hand function</td>
</tr>
<tr>
<td>U British Columbia NCT01579604</td>
<td>Supinator branch to posterior interosseous nerve transfer</td>
<td>≥18yr Age Cervical SCI 12m>SCI>6m ICHS 0-5</td>
<td>Chronic SCI 12m>SCI>4m F/U 24m</td>
<td>Began 6/2012 Vancouver, BC 10 Subjects</td>
<td>Phase 4 RCT Parallel Group Open Label</td>
<td>Upper Extremity Strength (Manual Muscle Testing) Active Range of Motion DASH scale GRASSP</td>
<td>Study of early peripheral nerve transfer for improving UE strength in patients with tetraplegia</td>
</tr>
<tr>
<td>U of Texas Med Center, Houston NCT03451474</td>
<td>Upper extremity nerve transfer surgery followed by hand/occupational therapy to retrain motor skills</td>
<td>Age 18-65yr Cervical SCI AIS A, B, C ICHS 0-4 Lives in Houston area</td>
<td>Chronic SCI SCI>6m F/U 24m</td>
<td>Began 4/2018 Houston, TX 10 Subjects</td>
<td>Phase N/A Single Group Open Label</td>
<td>GRASSP Manual Muscle Testing UE UEMS EMG SCIM III DASH SF-36</td>
<td>Study for restoration of hand function utilizing Nerve Transfer Surgery in persons with chronic cervical SCI</td>
</tr>
</tbody>
</table>
Spinal Cord Outcomes Partnership Endeavor (SCOPE, www.scope-sci.org)

Current SCI Clinical Trials of Drug, Cell, and Surgical Interventions to Improve Neurological and Related Functional Outcomes

Revised June 3, 2019 Listing 52 Trials

<table>
<thead>
<tr>
<th>Sponsor/NCT</th>
<th>Intervention</th>
<th>Inclusion/Exclusion Criteria</th>
<th>Treatment Timing & Follow-up</th>
<th>Enrollment</th>
<th>Phase of Study</th>
<th>Primary Outcome Other Outcomes</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tokyo University, NCT01485458</td>
<td>Early (<24h) vs. Delayed (>2wk) Decompression surgery for acute cervical SCI in patients with cervical canal stenosis without bony injury</td>
<td>28-79yr Age Cervical below C5 AIS C</td>
<td>Acute/Subacute Admitted within 48 hours of SCI F/U 1yr</td>
<td>Began 12/2011 Japan 100 subjects</td>
<td>Phase N/A RCT Open Label</td>
<td>ISNCSCI SCIM walking ability SF-36, Pain Symptom Inventory AE</td>
<td>Test of whether timing of spinal cord decompression is associated with neurological outcome in SCI without fracture/dislocation</td>
</tr>
<tr>
<td>Nantes Univ Hosp, NCT02673320</td>
<td>Randomized assignment to early (within 48hr) vs. delayed (at 15 days) spinal decompression surgery</td>
<td>≥18yr Age C2-T1 AIS A-D Contusive SCI on MRI with narrow canal</td>
<td>Acute SCI SCI eligible for surgery within 48hrs F/U 2yr</td>
<td>Not yet begun France Multicenter 72 subjects</td>
<td>Phase N/A RCT Parallel Group Open Label</td>
<td>ISNCSCI TMS, UEMS, WISCI II SCIM III SF-36 MRI AE/Complications</td>
<td>RCT to compare SCI outcomes of decompressive spine surgery within 48hr vs. surgery performed at 15 days</td>
</tr>
<tr>
<td>Peking University People’s Hospital, NCT03103516</td>
<td>Early (≤24h) vs. Delayed (>24hr) epidural decompression spinal surgery. Group assignment determined by patient's condition and operation time; i.e. non-randomized trial</td>
<td>Age 16-85yrs SCI Level NS AIS NS</td>
<td>Acute SCI Time NS F/U 6m</td>
<td>Not yet begun Beijing China 200 Subjects</td>
<td>Phase N/A Non-random Parallel Group Single Blind</td>
<td>UEMS, LEMS AIS AE</td>
<td>Non-randomized trial comparing neurological outcomes in persons with acute SCI undergoing early vs. delayed epidural decompression</td>
</tr>
</tbody>
</table>

This table is abstracted from the clinical trial registration website www.clinicaltrials.gov using the search term “Spinal Cord Injuries” and is updated periodically. The most recent update occurred June 3, 2019 at which time the www.clinicaltrials.gov search found a total of 1045 SCI trials. Of these, there were 301 interventional trials that are enrolling or not-yet-enrolling. Review of these 301 studies for those that are targeting improvement in neurological or related functional outcomes yielded the current list. The table includes 52 SCI trials from the search that: 1) are currently actively recruiting or soon-to-be recruiting subjects; 2) are interventional (testing an intervention/treatment) using drugs, cell therapies, surgery, hypoxia, hyperthermia, hyperbaric oxygen, low energy extracorporeal shock wave therapy, or near infrared laser light; and 3) targeted sensorimotor neurological or related functional improvement of the spinal cord as outcome measures. Trials meeting these criteria are included if sufficient information is available on the clinicaltrials.gov webpages to adequately determine basic protocol design, the nature of the intervention, its delivery method, and relevant outcome measures.

Interventional clinical trials are routinely registered on www.clinicaltrials.gov based on legal requirements* and because scientific journals may require registration for publication of the trial results. The clinicaltrials.gov website is the largest repository of current and past clinical trials for all diseases and disorders—as of June 3, 2019 the registry contained information on 307,343 trials including research conducted in all 50 states in the USA and 210 countries. Investigators may choose not to register some early phase trials and those testing behavioral interventions, even though they may be important and scientifically rigorous studies.

*U.S. Public Law 110-85 requires the registration and reporting of results of “certain applicable clinical trials,” i.e., controlled interventional clinical trials that are subject to FDA regulation and that involve a Drug or Biologic (other than Phase I investigations), or Device (other than small feasibility studies); http://prsinfo.clinicaltrials.gov/fdaaa.html.
More detailed information on individual trials may be accessed by using the NCT number found in the first column of the table. All trials registered with www.clinicaltrials.gov are assigned a registration number that begins with NCT (e.g. NCT01321333). Entering the NCT number into the search field of www.clinicaltrials.gov or www.google.com will access the webpage describing the trial, the study centers, and contact information in more detail. When an electronic version of the tables is used (e.g. when downloaded as a pdf file from www.scope-sci.org), the webpages describing a specific trial can be directly accessed by using the hyperlink (left Click to follow the link) of the NCT number in the table. Listing of a clinical trial on the clinicaltrials.gov website does not reflect an endorsement by SCOPE or the National Institutes of Health. Information appearing on the clinicaltrials.gov website is provided by study sponsors/investigators and is not verified by SCOPE or clinicaltrials.gov for scientific validity or relevance. Before volunteering to participate in a clinical trial, patients are urged to discuss all options with their healthcare provider and other trusted advisors.

Terms/Abbreviations

AIH: Acute Intermittent Hypoxia. Short duration (<2 min) exposure to breathing reduced oxygen concentration levels (~10% inspired oxygen), with alternating exposures to breathing air with normal oxygen concentration (~21% inspired oxygen). This intervention is commonly delivered with a breathing mask device as a series of multiple brief hypoxic exposures alternating longer breathing exposure to “room air” with normal oxygen content.

AIS: the ASIA (American Spinal Injury Association) Impairment Scale is a component of the ISNCSCI that classifies the degree of motor/sensory sparing below the level of injury. The AIS scale ranges from A (most severe, complete injury with no sparing of sensory/motor function in the sacral segments S4-S5 that innervate the anus/rectum) to E (normal). AIS B describes sensory only sparing; AIS C describes sensory and very weak motor sparing; AIS D describes sensory and stronger but not normal motor sparing.

Ashworth/Modified Ashworth: a scale used to measure spasticity severity

Barthel Index: a measure of performance in Activities of Daily Living (ADL) and Mobility

Box and Block Test: a test of manual dexterity

Central Cord Syndrome/Cervical Central Cord Syndrome: motor incomplete cervical SCI in which the upper extremities are significantly more impaired than the lower extremities

COPM: Canadian Occupational Performance Measure

DASH: Disability of Arm, Shoulder, Hand scale is a measure of the upper extremity function

EMG: the electromyogram refers to a physiological test of muscle and nerve function.

ESWT: extracorporeal shock wave therapy. Delivery of sound wave energy to the spinal cord using a transducer applied to the skin (extracorporeal i.e. outside of the body).
FIM: the Functional Independence Measure was developed to measure the burden of care in persons who were not independent in ADL, hygiene/self-care, and mobility. The FIM and its subscales have been used as an outcome measure of a research subject’s independence in the performance of a variety of specific activities.

Frankel Scale: an older scale for classifying severity of injury that was modified in 1992 to create the AIS.

F/U: follow-up

GRASSP: Graded Redefined Assessment of Strength, Sensibility, and Prehension is a clinical measurement of upper limb function for use in person with tetraplegia (quadriplegia).

HDE: Humanitarian Device Exemption is a U.S. Food & Drug Administration (FDA) application that, if successful, authorizes the applicant to market a Humanitarian Use Device (HUD) subject to certain profit and use restrictions. See: https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM110203.pdf

HUD: Humanitarian Use Device is a designation of the U.S. FDA for medical devices intended to benefit patients in the treatment or diagnosis of a disease or condition that affects or is manifested in fewer than 4,000 persons in the United States per year. HUDs cannot be sold for profit, except in narrow circumstances, and they can only be used in a facility after an Institutional Review Board has approved their use in that facility except in certain emergencies.

IANR-SCIFRS: the International Association of Neurorestoratology-Spinal Cord Injury Functional Rating Scale. Changes in motor and sensory scores assessed by IANR-SCIRFS scale (total score range from 0 to 51, higher values represent a better outcome)

ICSH: International Classification for Surgery of the Hand in Tetraplegia is a clinical measure of hand function used by surgeons performing reconstructive surgery to improve function in persons with tetraplegia.

IRB: Institutional Review Board is a multidisciplinary group that has been formally designated by an institution such as a hospital to review, approve and monitor biomedical research involving human subjects.

ISNCSCI: International Standards for Neurological Classification of Spinal Cord Injury—sometimes referred to as the ASIA (American Spinal Injury Association) standards. This refers to the accepted international standards for performing motor/sensory physical examination of persons with spinal cord injury and the classification scheme for documenting the neurological level and the severity (completeness) of injury.

IT: intrathecal, within the subarachnoid space surrounding the spinal cord—e.g. administration of a drug into the subarachnoid space which contains the cerebrospinal fluid (CSF)

IV: intravenous—administration of a drug by vein
Kinematics: analysis of movement

Kunming Locomotor Scale: a 10-grade Roman numeral locomotion scoring system describing ability to stand, ability to walk, and required support/devices.

N/A: not applicable

NS: not specified

Penn Spasm Frequency Scale: a measure of spasticity based on frequency of spasm occurrence

Phase of Study: Clinical trials usually progress in phases from 1 to 4. (Note: trials that are not on the path to FDA/regulatory approval (e.g. trials of surgical techniques or rehabilitation therapies) may not have a phase designation.)

1. Phase 1 trials are usually first-in-human or first-in-disease/condition experiments that are intended to demonstrate feasibility (can it be done), safety (is it reasonably safe), and tolerability (are the side effects tolerable). Phase 1 trials usually do not include a comparison control group and as such, do not provide direct evidence of the interventions efficacy. Phase 1 trials usually enroll a small number of subjects and are commonly done at a single study center but may use a small number of collaborating centers.

2. Phase 2 trials follow successful completion of Phase 1. Phase 2 trials are used to develop information on intervention administration (how to give), dose (how much to give), timing (when and how long to give), effect of the intervention on the body (what does it do, beneficial or harmful). Phase 2 trials commonly utilize multiple study centers, many subjects, and include a randomized control group to provide direct information about efficacy and safety of the intervention. Phase 2 trials enable refinement of how to administer the intervention and how to measure its beneficial effects (what Outcome Measurement to use).

3. Phase 3 trials are conducted using the refined protocols developed from Phase 2 trials. Phase 3 trials are often termed “pivotal” studies because they are sufficiently well-designed and rigorously conducted that their results, if positive, can be used to make the case for regulatory approval (e.g. trials that lead to FDA approval for clinical use). Phase 3 trials almost always enroll large numbers of subjects (in the hundreds or more), use multiple study centers, and randomized control group design (with placebo control and double blinding if feasible). The FDA generally requires two successful confirmatory Phase 3 trials of an intervention for approval.

4. Phase 4 trials are conducted after regulatory (e.g. FDA) approval to gather additional safety and efficacy data.

Open Label: a trial in which there is no attempt to conceal the identity of the intervention from the subjects; i.e. there is no “blinding” or “masking” of the intervention—the subjects know that they are receiving either an “active ingredient” or a placebo.

RCT: Randomized Controlled Trial—a clinical trial in which subjects are randomly (like flipping a coin) assigned to either receive the active treatment or an alternative (control). Well-designed RCT’s minimize the influence of variables other than the intervention that might have an effect on the desired outcome. For this reason, they provide the best evidence of efficacy and safety. The most rigorous RCT’s utilize a placebo (inactive) control group and blinding (concealing active vs. control assignment) to minimize bias in the interpretation of study results.
Residual Urine: Changes in residual urine measured after voiding by ultrasound test (volume of urine in mL, lower values represent a better outcome)

ROM: Range of Motion

SCIM/SCI II/SCI III: the Spinal Cord Independence Measure is a measure of a person's ability to perform certain activities independently

SQ: subcutaneous—administration of a drug by injection beneath the skin

SF-36: the Short Form-36 is a patient-reported survey of health status. The SF-36 is commonly used as a measure of Health-Related Quality of Life

TMS/UEMS/LEMS: Total Motor Score/Upper Extremity Motor Score/Lower Extremity Motor Score are components of the ISNCSCI that include the ASIA Motor Index Score (the TMS) and the sub-components of the UEMS and the LEMS which are commonly analyzed and reported separately.

Tardieu Scale: test of spasticity by assessing muscle resistance to passive movement at both slow and fast speed.

VAS: Visual Analogue Scale—a scale commonly used to assess the severity of pain

9 Hole Peg Test: a test of manual dexterity

6MWT: 6 minute walk test. An assessment of the distance that the subject can walk in 6 minutes.

10MWT: 10 meter walk test. An assessment of the time required to walk 10 meters.