

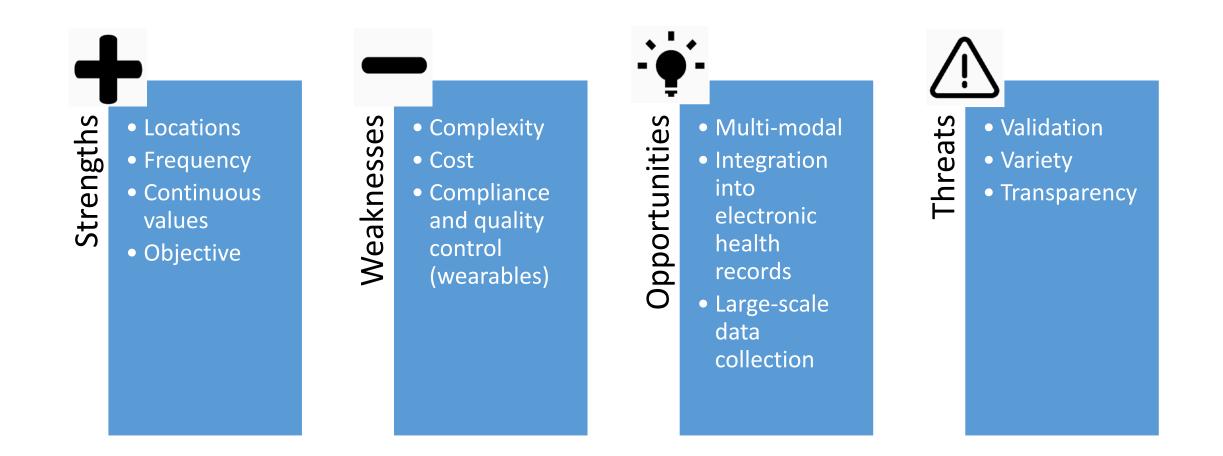
Institute of Biomedical Engineering UNIVERSITY OF TORONTO

Digital Functional Assessment* *for humans

José Zariffa, Ph.D., P.Eng.

Senior Scientist – KITE, Toronto Rehab, University Health Network Associate Professor – Institute of Biomedical Engineering, University of Toronto


SCOPE – September 14, 2021



Motivation

Marino, Journal of Rehabilitation Research & Development, 2007.

Motivation

Robotic Platforms

Wearables

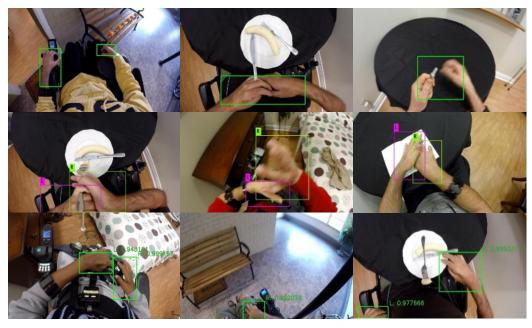
Motion Capture

Digital Questionnaires

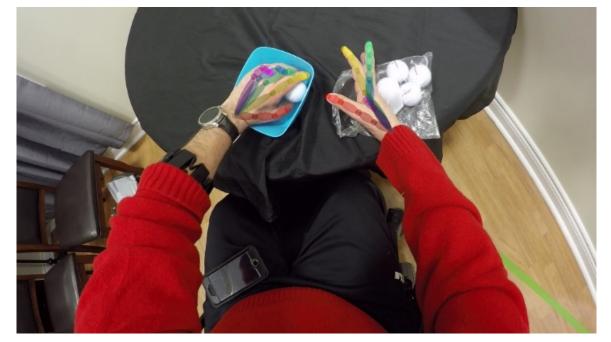
Robotic Platforms

Study	Sensor or Platform	Metric	Evaluation	Result
LOWER EXTREMITY				
Bolliger et al., 2008	Lokomat	Isometric lower extremity muscle force	Intra- and inter-rater reliability (n = 14; mixed pop)	Fair-to-good
Domingo and Lam, 2014	Lokomat	Static position sense	Discriminant and criterion validity, test- retest reliability (n = 23)	Valid and reliable
Galen et al, 2014	Lokomat	Isometric lower extremity peak torques	Responsiveness (n = 18)	Changes observed after intervention; non-linear relationship to motor score changes
Chisholm et al., 2016	Lokomat	Kinesthesia	Discriminative and criterion validity, test- retest reliability (n = 17)	Valid and reliable
Dambreville et al., 2019	Robotic ankle-foot orthosis	Ankle proprioception	Discriminative validity, test-retest reliability (n = 15)	Valid and reliable

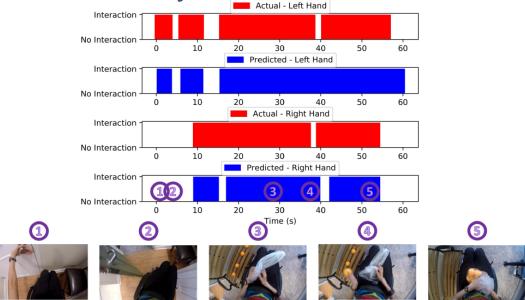
Study	Sensor or Platform	Metric	Evaluation	Result
UPPER EXTREMITY	,			
Zariffa et al., 2012	ArmeoSpring	Multiple features (ROM, smoothness, grip)	Multilinear regression models (R ²) (n = 14)	Good prediction of GRASSP, ARAT, and SCIM
Rudhe et al., 2012	ArmeoSpring	Movement workspace	Criterion validity, test-retest reliability (n = 8)	Fair-to-good reliability, correlation with SCIM self- care
Prochazka and Kowalczewski, 2015	ReJoyce	RAHFT	Criterion validity, responsiveness, test-retest reliability (n = 13)	Well correlated with ARAT, responsive and reliable
Keller et al., 2015	ARMin	Multiple features (kinematic, kinetic, timing)	Criterion validity, inter- and intra- rater reliability (n = 5)	Reliability of different metrics ranges from weak to good. Several had good correlation with MMT, GRASSP, and VLT
Smith et al., 2019	Custom wrist apparatus + EMG	Hyperreflexia, proprioception, strength	Discriminant validity, responsiveness, multilinear regression. (n = 20)	Inter-group differences, responsive to intervention, predictive of myelopathy clinical scores
Grasse et al, 2019	Suite of custom devices	Hand and wrist force and ROM	Discriminant and criterion validity, test-retest reliability, MDD (n = 15)	Reliable, variable validity across metrics


Wearables

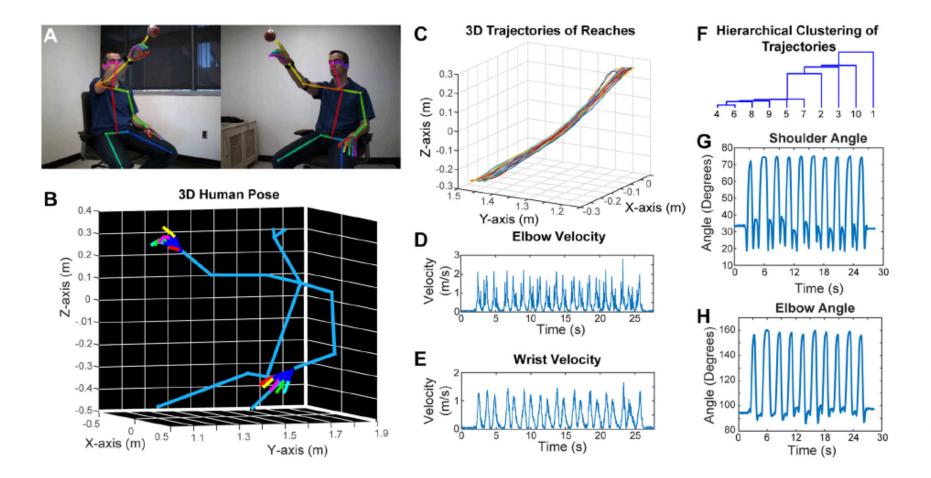
Study	Sensor or Platform	Metric	Evaluation	Result
LOWER EXTREMITY				
Galen et al., 2011	Instrumented insoles	Gait kinematics	Responsiveness (n = 18)	Changes observed after intervention;
Werner et al., 2020	IMUs	Gait kinematics	Clustering, criterion validity (n = 29)	Correlations of select features with 6MWT


Study	Sensor or Platform	Metric	Evaluation	Result			
UPPER EXTREMITY P	UPPER EXTREMITY PART 1						
Maskimovic and Popovic, 1999	Customer goniometer-based apparatus	Movement classification	Classification accuracy (n = 16)	46-100%			
Oess et al., 2012	Sensorized gloves	Hand kinematics	Accuracy, reliability, feasibility (n = 4)	Accurate, reliable, feasible			
Brogioli et al., 2016	IMUs	Amount of UL activity	Responsiveness, discriminant validity (n = 31)	Decreasing differences in UL activity between tetraplegic and paraplegic participants over time			
Popp et al., 2016	IMUs	Detection of active propulsion	Classification accuracy self- vs attendant propulsion (n = 21)	82-93%			
Brogioli et al., 2017	IMUs	Amount of UL activity	Discriminant and criterion validity (n = 30)	Correlation with motor scores and SCIM, differences between tetraplegic and paraplegic individuals.			
Lonini et al., 2017	Accelerometer + environmental RFID	Detection of stand-to- reach events	Classification accuracy (n = 10)	98%			
Schneider et al., 2018	IMUs	Quality of wheeling movements	Reliability (n = 63)	2-3 days of recording required for reliable measurement			

Study	Sensor or Platform	Metric	Evaluation	Result		
UPPER EXTREMITY PART 2						
Likitlersuang et al., 2019	Egocentric camera	Hand-object interactions	Criterion validity (F1-score vs. manual annotations) (n = 9)	0.73-0.74		
Bandini et al., 2020	Egocentric camera	Hand-object interactions	Criterion validity (F1-score vs. manual annotations) (n = 3)	0.76		
Dousty and Zariffa, 2020	Egocentric camera	Grasp types used	Clustering of video frames showing similar grasping postures (n = 1)	Moderate accuracy		
Su et al., 2020	Sensorized gloves	Hand kinematics	Discriminative and criterion validity (n = 98)	Differences between healthy an myelopathy groups. Relationship with JOA scores.		
Dousty and Zariffa, 2021	Egocentric camera	Tenodesis grasp use	Classification accuracy (n = 17)	Accurate detection of presence of tenodesis grasp at person- level		
Bravi et al., 2021	IMUs	Shoulder ROM	Criterion validity, inter- rater reliability (n = 8)	Reliable; valid for most movements		


Hand Detection

Postural Estimation


Hand-Object Interaction Detection

Motion Capture and Biomechanics

Study	Sensor or Platform	Metric	Evaluation	Result
Yozbatiran et al., 2010	Inclinometer, force sensor	Balance and leg force metrics	Validity and reliability (n = 21)	Correlations between changes in leg force and ISNCSCI elements. Variable reliability.
Cacho et al., 2011	Marker-based motion capture	Reaching kinematics	Validity (n = 20)	Some correlations between kinematic variable and ISNCSCI, FIM, SCIM.
Manella et al., 2017	Marker-based motion capture	Oscillations during drop test	Test-retest reliability, criterion validity (n = 40)	Reliable and valid
Colombo Zefinetti et al., 2020	Kinect v2 (multiple)	Wheelchair propulsion kinematics	Reliability, discriminant validity (n = 60)	Results comparable with Vicon for different levels of impairment
Nithiatthawanon et al., 2020	Load cell	Lower limb loading ability	Prediction of functional mobility and fall history (n = 90)	Thresholds identified to predict independent mobility and fall risk

Digital Functional Assessment not yet used in SCI: Markerless motion capture

Arac, Ahmet, et al. "DeepBehavior: A deep learning toolbox for automated analysis of animal and human behavior imaging data." *Frontiers in systems neuroscience* 13 (2019): 20.

Computer-Assisted Testing and mHealth

Study	Sensor or Platform	Metric	Evaluation	Result
Jette et al., 2012	Computer Adaptive Testing (CAT)	Spinal Cord Injury – Functional Index	Precision and reliability of CAT vs full item bank (n = 855)	Acceptable psychometric properties of CAT version
Jia et al., 2020	Арр	ICF elements	Rasch analysis (n = 112)	Set of categories with good fit to Rasch model

Roadmap to use in practice and clinical research

- Inter-disciplinary technical development
- Emphasis on role and complementarity of information
- Progressive acceptance through use as secondary outcome measures
- Standardization of methods and larger validation studies
- Ease of access and use
- Integration into digital infrastructure (EHRs)

Validate while incorporating in trials on exploratory/secondary basis

Prioritize ease of adoption

References

- [1] M. Bolliger et al, "Standardized voluntary force measurement in a lower extremity rehabilitation robot," Journal of Neuroengineering and Rehabilitation, vol. 5, (1), pp. 1-8, 2008.
- [2] A. Domingo and T. Lam, "Reliability and validity of using the Lokomat to assess lower limb joint position sense in people with incomplete spinal cord injury," *Journal of Neuroengineering and Rehabilitation*, vol. 11, (1), pp. 1-10, 2014.
- [3] A. E. Chisholm *et al*, "Quantification of lower extremity kinesthesia deficits using a robotic exoskeleton in people with a spinal cord injury," *Neurorehabil. Neural Repair*, vol. 30, (3), pp. 199-208, 2016.
- [4] S. S. Galen et al, "Isometric hip and knee torque measurements as an outcome measure in robot assisted gait training," NeuroRehabilitation, vol. 34, (2), pp. 287-295, 2014.
- [5] C. Dambreville et al, "Ankle proprioception during gait in individuals with incomplete spinal cord injury," Physiological Reports, vol. 7, (24), pp. e14328, 2019.
- [6] J. Zariffa *et al*, "Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury," *IEEE Trans. Neural Syst. Rehabil. Eng.*, vol. 20, (3), pp. 341-350, May, 2012.
- [7] A. Prochazka and J. Kowalczewski, "A fully automated, quantitative test of upper limb function," J. Mot. Behav., vol. 47, (1), pp. 19-28, 2015.
- [8] U. Keller et al, "Robot-assisted arm assessments in spinal cord injured patients: a consideration of concept study," PloS One, vol. 10, (5), pp. e0126948, 2015.
- [9] K. M. Grasse *et al*, "A suite of automated tools to quantify hand and wrist motor function after cervical spinal cord injury," *Journal of Neuroengineering and Rehabilitation*, vol. 16, (1), pp. 1-12, 2019.
- [10] C. Rudhe et al, "Reliability of movement workspace measurements in a passive arm orthosis used in spinal cord injury rehabilitation," Journal of Neuroengineering and Rehabilitation, vol. 9, (1), pp. 1-8, 2012.
- [11] Z. A. Smith et al, "Assessing hand dysfunction in cervical spondylotic myelopathy," PloS One, vol. 14, (10), pp. e0223009, 2019.
- [12] S. S. Galen et al, "A portable gait assessment tool to record temporal gait parameters in SCI," Med. Eng. Phys., vol. 33, (5), pp. 626-632, 2011.
- [13] C. Werner et al, "Complementing clinical gait assessments of spinal cord injured individuals using wearable movement sensors," in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020, .
- [14] N. P. Oess, J. Wanek and A. Curt, "Design and evaluation of a low-cost instrumented glove for hand function assessment," *Journal of Neuroengineering and Rehabilitation*, vol. 9, (1), pp. 1, 2012.
- [15] W. L. Popp et al, "A novel algorithm for detecting active propulsion in wheelchair users following spinal cord injury," Med. Eng. Phys., vol. 38, (3), pp. 267-274, 2016.
- [16] Michael Brogioli *et al*, "Monitoring Upper limb recovery after cervical spinal cord injury: insights beyond assessment scores," *Frontiers in Neurology*, vol. 7, (142), pp. 1-12, August 31, 2016.

References

- [17] M. Brogioli *et al*, "Multi-Day Recordings of Wearable Sensors Are Valid and Sensitive Measures of Function and Independence in Human Spinal Cord Injury," *Journal of Neurotrauma*, vol. 34, (6), pp. 1141-1148, 2017.
- [18] S. Schneider *et al*, "Reliability of wearable-sensor-derived measures of physical activity in wheelchair-dependent spinal cord injured patients," *Frontiers in Neurology*, vol. 9, pp. 1039, 2018.
- [19] R. Maksimovic and M. Popovic, "Classification of tetraplegics through automatic movement evaluation," Med. Eng. Phys., vol. 21, (5), pp. 313-327, 1999.
- [20] L. Lonini *et al*, "Sensor fusion to infer locations of standing and reaching within the home in incomplete spinal cord injury," *American Journal of Physical Medicine & Rehabilitation*, vol. 96, (10 Suppl 1), pp. S128, 2017.
- [21] J. Likitlersuang et al, "Egocentric video: a new tool for capturing hand use of individuals with spinal cord injury at home," J Neuroeng Rehabil, vol. 16, (1), pp. 83, 2019.
- [22] A. Bandini, M. Dousty and J. Zariffa, "A wearable vision-based system for detecting hand-object interactions in individuals with cervical spinal cord injury: First results in the home environment," in 42nd Annual International Conference of the IEEE Engineering in Medicine & amp; Biology Society (EMBC), Jul 2020, pp. 2159-2162.
- [23] M. Dousty and J. Zariffa, "Tenodesis Grasp Detection in Egocentric Video," Jbhi, vol. 25, (5), pp. 1463-1470, 2021.
- [24] M. Dousty and J. Zariffa, "Towards clustering hand grasps of individuals with spinal cord injury in egocentric video," in 42nd Annual International Conference of the IEEE Engineering in Medicine & Conference (EMBC), Jul 2020,.
- [25] X. Su et al, "Clinical Application of a New Assessment Tool for Myelopathy Hand Using Virtual Reality," Spine, vol. 45, (24), pp. E1645-E1652, 2020.
- [26] R. Bravi et al, "An Inertial Measurement Unit-Based Wireless System for Shoulder Motion Assessment in Patients with Cervical Spinal Cord Injury: A Validation Pilot Study in a Clinical Setting," Sensors, vol. 21, (4), pp. 1057, 2021.
- [27] F. Colombo Zefinetti et al, "Tracking and Characterization of Spinal Cord-Injured Patients by Means of RGB-D Sensors," Sensors, vol. 20, (21), pp. 6273, 2020.
- [28] N. Yozbatiran et al, "A tele-assessment system for monitoring treatment effects in subjects with spinal cord injury," J. Telemed. Telecare, vol. 16, (3), pp. 152-157, 2010.
- [29] E. W. A. Cacho et al, "Upper limb assessment in tetraplegia: clinical, functional and kinematic correlations," International Journal of Rehabilitation Research, vol. 34, (1), pp. 65-72, 2011.
- [30] K. J. Manella, K. E. Roach and E. C. Field-Fote, "Temporal indices of ankle clonus and relationship to electrophysiologic and clinical measures in persons with spinal cord injury," *Journal of Neurologic Physical Therapy*, vol. 41, (4), pp. 229-238, 2017.
- [31] T. NITHIATTHAWANON et al, "The use of lower limb loading ability as an indicator for independence and safety in ambulatory individuals with spinal cord injury," European Journal of Physical and Rehabilitation Medicine, vol. 3, 2020.
- [32] A. M. Jette et al, "Development and initial evaluation of the spinal cord injury-functional index," Arch. Phys. Med. Rehabil., vol. 93, (10), pp. 1733-1750, 2012.
- [33] M. Jia *et al*, "Using a Mobile App-Based International Classification of Functioning, Disability, and Health Set to Assess the Functioning of Spinal Cord Injury Patients: Rasch Analysis," *JMIR mHealth and uHealth*, vol. 8, (11), pp. e20723, 2020.