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Abstract
Traumatic spinal cord injury (SCI) causes a sudden onset multi-system disease, permanently altering
homeostasis with multiple complications. Consequences include aberrant neuronal circuits, multiple
organ system dysfunctions, and chronic phenotypes such as neuropathic pain and metabolic syndrome.
Reductionist approaches are used to classify SCI patients based on residual neurological function. Still, re-
covery varies due to interacting variables, including individual biology, comorbidities, complications, ther-
apeutic side effects, and socioeconomic influences for which data integration methods are lacking.
Infections, pressure sores, and heterotopic ossification are known recovery modifiers. However, the molec-
ular pathobiology of the disease-modifying factors altering the neurological recovery-chronic syndrome tra-
jectory is mainly unknown, with significant data gaps between intensive early treatment and chronic
phases. Changes in organ function such as gut dysbiosis, adrenal dysregulation, fatty liver, muscle loss,
and autonomic dysregulation disrupt homeostasis, generating progression-driving allostatic load. Interac-
tions between interdependent systems produce emergent effects, such as resilience, that preclude single
mechanism interpretations. Due to many interacting variables in individuals, substantiating the effects of
treatments to improve neurological outcomes is difficult. Acute injury outcome predictors, including
blood and cerebrospinal fluid biomarkers, neuroimaging signal changes, and autonomic system abnormal-
ities, often do not predict chronic SCI syndrome phenotypes. In systems medicine, network analysis of bio-
informatics data is used to derive molecular control modules. To better understand the evolution from
acute SCI to chronic SCI multi-system states, we propose a topological phenotype framework integrating
bioinformatics, physiological data, and allostatic load tested against accepted established recovery metrics.
This form of correlational phenotyping may reveal critical nodal points for intervention to improve recovery
trajectories. This study examines the limitations of current classifications of SCI and how these can evolve
through systems medicine.
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Current Lack of Integration of Multi-System
Effects of Spinal Cord Injury
Symptoms, then are in reality nothing but the cry from

suffering organs.—Jean-Martin Charcot, 1868

Science may be described as the art of systematic over-

simplification—the art of discerning what we may with

advantage omit.—Karl Popper, 19821

Traumatic spinal cord injury (SCI) is one of the most

complex medical conditions, an acute event followed by

both recovery and chronic disease. Severe cervical SCI im-

pacts nearly all bodily organ systems. This is reflected in

SCI medicine textbooks, where each system requires a sep-

arate expert chapter. However, integrated models of how

the altered systems interact after injury are lacking

(Fig. 1). Normally, the spinal cord is instrumental in the ho-

meostatic feedback circuits of multiple systems. The acute

injury abruptly disrupts these systems that evolve into dif-

ferent functional states with differing time courses across

individuals. Thus, we observe that the severity of neuro-

pathic pain, dysautonomia, immunological dysfunction,

spasticity, and age-accelerating states like metabolic syn-

drome vary among people with the same initial injury pat-

tern. Data gaps between the acute, subacute, and chronic

phases also impede detecting key events that drive eventual

phenotypes. Although we often speak of the post-injury

phase as recovery, on a systems level, it primarily consists

of adaptations to the loss of prior homeostatic feedback

controls, some of which are maladaptive. Previously,

most acute research has focused on the injury site, and nu-

merous localized molecular effects limiting recovery were

identified in experimental models.2,3 However, as the im-

portance of multi-system-distributed changes becomes in-

creasingly evident,4 a broader perspective is required.

Precision medicine seeks to tailor care to individual

patients based on unique features. For SCI, this will

FIG. 1. Spinal cord injury is a multi-system disease. System changes are inter-dependent.
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require the ability to define subtypes from several classes

of relevant data (e.g., clinical, imaging, molecular, phys-

iological) that capture evolution to different chronic

SCI states. Using examples from traumatic brain injury,5

we describe methods to classify SCI syndromically

according to multi-variate phenotypes deduced from

similarity analysis clusters.6 These analyses may un-

cover common shared signaling modules and critical

transitional events that underlie secondary complica-

tions by integrating phenotypic and molecular networks

that drive pathophysiologies.7

Systems medicine is dedicated to deciphering diseases

at the comprehensive individual level, revolving around

the idea that specific phenotypes reflect complex, multi-

layered molecular and physiological interactions. Both

intrinsic and extrinsic factors influence dynamic post-

SCI inter-system interactions. An ‘‘integromics’’ ap-

proach to SCI quantifies interactions between discrete

organ system disturbances within physiological and mo-

lecular networks4,8–12 ‘‘Syndromics’’ intends to generate

a consolidated picture of an affected individual by inte-

grating mechanistic biological data with clinical mea-

sures.12 Integrative physiology and systems biology13

are co-evolving disciplines to quantify disease-induced

disruption in interconnected biological networks that

bridge traditionally separate systems (Fig. 2).14 This ap-

proach underlies the concept of emergence, wherein

complex biological systems exhibit composite higher-

level properties derived from the interactions of compo-

nents.15 Attributes such as resilience, frailty, and aging

are emergent properties relevant to SCI.

Systems biology has been used to develop integrative

models16 in multiple sclerosis (MS)17 and amyotrophic

lateral sclerosis (ALS).18 Normally, the spinal cord

serves as a multi-organ physiological adaptive, and stabi-

lizing network. SCI disruption drives evolution to new

dysregulated states seen as phenotypes such as neuro-

pathic pain and dysautonomia based on neurophysiolog-

ical and molecular changes. To model a phenotypic

evolution framework for SCI, we propose combining

physiological knowledge with network analysis from sys-

tems biology,19 allostatic stress indices,13 and Physiome

computational biology models.20,21

Current SCI classification systems are based on aggre-

gated natural history observations derived from periodic

neurologic physical examinations22 and outcome mea-

sures assessing function and self-care23 that result from

combinations of neurological recovery and adaptive

strategies. There is a lack of methods to integrate chronic

secondary conditions such as neuropathic pain,24 auto-

nomic dysfunction,25 spasticity, muscle atrophy and

deconditioning,26 bone mass loss,27 immune dysfunc-

tions,28 chronic inflammation,29 and metabolic syndrome

(Table 1).30 Acute complications, such as infections that

FIG. 2. Integromics: Spinal cord injury disrupts numerous homeostatic feedback circuits. Initial injury
severity is the baseline variable from which a variety of outcomes may occur including secondary
phenotypes such as neuropathic pain. Critical transitions underlay the evolution of these phenotypes to be
explored against bioinformatics data: Genomics, Transcriptomics, Proteomics, Metabolomics: Epigenetic
change is anticipated to be driven by allostatic load. Bioinformatic and clinical data is integrated in a
network analysis to identify the most highly correlated factors influencing phenotypes. This conceptual
figure is based on Figure 1 from Morris and Baladandayuthapani.388
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can negatively impact the initially predicted outcomes,

are called ‘‘disease-modifying events.’’25,31-33 However,

the mechanisms by which these events influence the

evolving neural injury remain unclear. Some systemic

biomarkers have been mechanistically linked to compli-

cation states. For example, reduced leukocyte human

leukocyte antigen-DR (HLA-DR) levels can indicate

post-SCI immune depression syndrome, increasing vul-

nerability to infections.34

Homeostatic processes, such as metabolism, require

physiological integration across organ systems.35 Nor-

mally, spinal cord integration of physiological systems

operates at multiple levels of complexity. SCI disrupts

these interdependent, feedback-regulated systems with

some effects dominated by the rostral-caudal level

where neural axis injury occurs,4 and others correlated

with injury completeness.36 A systems approach to un-

derstanding, treating, and mitigating the consequences

of SCI involves several hierarchical levels. Examples in-

clude the molecular pathobiology of inflammatory

cells,37 epigenetic changes contributing to neuropathic

pain,38 gut population dysbiosis, physiological variables

such as muscle tone and blood pressure,39 and system-

level impacts on metabolism, inflammation, and immune

function.

How do we move from the present state of SCI knowl-

edge toward more integrated models? Here, we review

existing prognostic and classification methods and sug-

gest working backward from clustered phenotype combi-

nations to learn the critical events in their evolution.

We suggest these ‘‘complication’’ phenotypes involve

transitions in ‘‘state’’ away from homeostasis in the

molecular-physiological systems that will have consis-

tent underlying topologies.40,41 We propose testing the

evolving phenotypes against multi-variate data to derive

the most significant physiological and molecular alter-

ations. If such a phenotypic-bioinformatics framework

is established, integration of evolving individual injury

data may enable the prediction of eventual neurological

and complication phenotypes,42 health outcomes,43 and

better inform treatment interventions. The steps include

identifying molecular fingerprints for phenotypes as mo-

lecular signals rising above the noise level and their con-

ceptualization within mechanistic computational models.44

Normal network physiology requires rapid stabilizing

feedback,45,46 regulated mainly by the central and periph-

eral nervous and neuroendocrine systems. Allostasis re-

fers to the dynamic regulatory adaptations within

normal physiological ranges that maintain stability in

physiologic systems such as autonomic, central nervous,

neuroendocrine, cardiovascular, metabolic, and immune

systems.47,48 Allostatic mechanisms restore ‘‘homeosta-

sis’’ after perturbations through feedback loop correc-

tions, including thermoregulation, peripheral vascular

resistance, and inflammation control. Following SCI,

the adaptive capacity of allostatic feedback is variably

lost, mainly due to distributed autonomic system disrup-

tions (Fig. 3).49 When a physiological system is destabi-

lized beyond homeostatic boundaries, allostatic load

(AL) is generated. Chronic AL contributes to accumulat-

ing damage, reduced resilience, accelerated system

aging,50 and potentiation of adverse health conditions.51

After SCI, many systems cannot ‘‘normalize,’’ resulting

in measurable AL (Fig. 4),52 increasing vulnerability to

metabolic syndrome, cardiovascular disease (CVD), in-

fection, chronic pain,53 and chronic inflammation due

to neuroendocrine and immune dysfunction.28 Overall,

these changes may reduce resilience and increase frail-

ty.54 At a genetic level, polymorphisms may increase

vulnerability to developing AL,55 and AL can drive epi-

genetic change within the individual genome.56

Systems biology examines perturbations of pathway

kinetics,57 primarily using omics data sources. Computa-

tional and statistical tools identify connections across

prominent molecular nodes and modules using machine

learning (ML), dimensionality reduction, and network

Table 1. Multi-System Effects of SCI

Multi-system effects of spinal cord injury364

Immune Post-SCI immune dysfunction syndrome and autoimmunity.29 Elevated inflammatory cytokines.365

Cardiovascular Debilitating orthostatic hypotension both in the acute and chronic phases. Dysregulated sympathetic activity, termed
autonomic dysreflexia. Cardiovascular diseases are the second most common cause of death of individuals with traumatic
SCI in the long term.130 Deep venous thrombosis and pulmonary embolism.

Respiratory Respiratory complications account for nearly one-third of deaths in the year after SCI and continue to be high throughout life.366

Cervical and upper thoracic injuries often impair respiratory function.367,368

Renal UTIs, renal calculi, renal failure.369

Intestinal Complex changes to intestinal health follow SCI370 and changes in gut microflora influence recovery.371

Skin Vulnerable to pressure ulceration and infection. In the acute phase, 30-40% of patients will develop a pressure ulcer, significantly
impacting their ability to recover and participate in rehabilitation.372

Bone Bones mass loss eventually creates fracture risk.27,373 Heterotopic ossification can cause pain and stiffness.374

Muscle Muscles undergo changes in fiber type, fibrosis26 and may lose their endocrine functions.341,375,376

Metabolic Impaired glucose tolerance and diabetes risk. Increases in body fat contribute to proinflammatory metabolic syndrome
Endocrine Reduced growth hormone and testosterone.377,378 Hypothalamic-pituitary–gonadal axis.379

Psychological Increased rates of anxiety and depression,380,381 substance abuse, impact of resilience380,382

SCI, spinal cord injury; UTI, urinary tract infection.
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FIG. 3. The effect of spinal cord injury on multi-system homeostasis. In the uninjured system, the spinal
cord (green box) integrates feedback systems (e.g., 1-6) between multiple levels of the spinal cord and
organ systems. Although stresses occur, the state returns to baseline. During acute injury, homeostatic
circuits are severely interrupted (red box, below injury level). This generates severe allostatic load. In the
chronic injury phase, the homeostatic disruption persists. Some systems may have intermittent severe
allostatic load, such as when autonomic dysreflexia occurs. For autonomic dysfunction, the level of injury
and severity are important determinants of disruption severity.

FIG. 4. Allostatic load positive feedback. Loss of normal feedback functions after spinal cord injury (SCI)
perpetuates and accelerates reduction in the emergent property-resilience. High resilience counters
allostatic stress. Here, allostatic load drives epigenetic change, which in the face of continued stressors
produces the critical transitions underlying chronic SCI phenotypes such as neuropathic pain, metabolic
syndrome, and spasticity.
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analysis,58,59 A major challenge is understanding the

linkage between molecular events and physiology. Phys-

iomes are quantitative physiological models that incorpo-

rate data from relevant biological scales to create models

useful in real-time.20 Physiomes altered by disease-

related changes are ‘‘pathomes.’’60 A cardiovascular

Physiome has been applied to traumatic burn injuries,61

and there is progress toward constructing brain physi-

omes.62 By adjusting variables in Physiome models, re-

searchers can rapidly predict changes within the

system. Physiome approaches are considered ‘‘top-

down’’ modeling approaches, whereas systems biology

is a ‘‘bottom-up’’ data-driven approach. Physiomes in-

volve describing physiology with mathematical equa-

tions that are necessarily oversimplifications. There is

a tension in modeling between high granularity and

fidelity versus the need for simplifications to achieve

utility for timely application.63 An allostatic load Phys-

iome may inform how homeostatic circuits dysregulated

after SCI switch from negative feedback to positive

feedback, potentiating and maintaining secondary

phenotype states.

Thus, we propose incorporating AL as a key progres-

sion driver in our multi-variate approach to the evolution

and maintenance of chronic SCI phenotypes, reduced

resilience, and system aging. If this hypothesis proves

correct, reducing AL could become a therapeutic goal

to mitigate accelerated aging and complications in

chronic SCI64 through interventions such as exercise,

drugs (anti-depressant/pain), and other treatments.65,66

Phenotypes, syndromes, states, and transitions
We propose to use ‘‘phenotype’’ for a definable post-

SCI secondary condition such as neuropathic pain,

metabolic syndrome, spasticity, and dysautonomia.

Identifying critical transitional ‘‘states’’ during

post-SCI evolution may be possible through molecu-

lar bioinformatics to identify ‘‘tipping’’ points that

establish these phenotypes. We further hypothesize

that syndromic modules of gene expression, epige-

netic change, allostatic load, and physiology will

underly these phenotypes and may be opportunities

for therapeutic intervention.

This article begins by examining conventional classifi-

cations, outcome measures, and established prognostic

indicators for SCI, including early magnetic resonance

imaging (MRI) structural and serum/cerebrospinal fluid

(CSF) biomarkers. We then address the challenges of rec-

onciling clinical and systems biology terminology and in-

tegrating current clinical measurements with molecular

network analysis into statistical models. Finally, we pro-

pose an integrated multi-systems conception of SCI

extending from the acute injury phase through the sub-

acute and into the chronic disease phase. In doing so,

we begin to bridge the wealth of knowledge regarding

acute injury in the domains of SCI critical care with

those of rehabilitation, physiology, and bioinformatics

science.

Current SCI Classification
The word is not the thing, the map is not the territory—

from the Meaning of Meaning. Ogden and Richards,

192367

The classification of a medical problem greatly affects

how we think about it. Medical classification methods

emerged from the clinical necessities of diagnosis, prog-

nosis, and treatment selection. For daily practice, medical

practitioners choose classification methods that are reli-

able, straightforward, cost-efficient, and broadly ac-

cepted. Historically, classification was based on

clinically pertinent physical examination and symptom

distinctions that described the observable disease pheno-

type. In contemporary medicine, there is increasing

emphasis on mechanistic molecular pathobiology in can-

cer,68 inflammatory,69,70 and autoimmune conditions71 as

more specific determinants for classification, prognosis,

and treatment. Alignment to molecular pathobiology

quantitatively and temporally during disease phases

serves as a rational basis for therapeutics discovery and

development.72,73 Bioinformatics has enabled unprece-

dented systemic and organ-level insights into interact-

ing gene transcription networks.74 Genomics and

transcriptomics have revealed that individual heteroge-

neity is normative in neurological diseases75-77 even

when external phenotypes appear similar. Further, the

observed heterogeneity of therapeutic efficacy to im-

prove recovery after SCI suggests that interindividual

variation and multi-system complexity are underlying

factors. Consequently, new modeling and classification

methods are needed.78

Prediction versus explanation
In the months after SCI, both recovery and multi-system

adverse changes simultaneously co-occur, with some in-

terposed complications worsening the recovery trajecto-

ry.32,33 Eventually, recovery slows down, but many

system changes continue to evolve, creating uniquely in-

dividual chronic SCI states. Changes, such as loss of bone

mass, altered gut microbiomes, and increased visceral

body fat content, are not obvious. Current SCI classifiers

(Supplementary Table S1), such as the American Spinal

Injury Association (ASIA) Impairment Scale (AIS),22 en-

compass broad states that greatly over-reduce the com-

plexity of SCI (Supplementary Fig. S1). Although early

damage biomarkers such as released structural proteins

and MRI changes79 may correlate with current SCI clas-

sifiers, significant physiological systems are not incorpo-

rated, and the markers do not reveal the underlying

causative molecular changes.
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Reductionist approaches are essentially blind to inte-

grated systems effects, with limited predictive power

for eventual functional recovery, complications, and

health states.19 Current SCI predictive models primar-

ily focusing on motor and sensory recovery are most ac-

curate at the extremes of injury (worst and least severe).

Reductionist approaches do not encompass emergent

network properties impacting recovery, such as resil-

ience.80

SCI classifications that are also
outcome measures
Optimal outcome measurements are relevant throughout

a disease population and usable by many healthcare prac-

titioners with strong metric properties.81,82 Typically,

after an SCI, there is immediate maximal functional

loss followed by some recovery, primarily in the first

year.83 Existing SCI classification frameworks, which

capture changes in neurologic function and independence

during recovery, are based on identifying the injury level

and residual function within the body’s myotomes and

dermatomes. The neurological classifications AIS and

International Standards for Neurological Classification

of Spinal Cord Injury (ISNCSCI) have enabled valid

longitudinal comparisons for research, including thera-

peutics.84,85 Following SCI, the ability to live indepen-

dently correlates to measurement scales of function,

including the Spinal Cord Independence Measure

(SCIM),23 which originated from the Functional Inde-

pendence Measure (FIM).86,87 In the current prognostic

framework, a common dependent variable is a measure

of disability correlated to independence and care

needs.23 SCIM-III does not, however, provide informa-

tion about chronic complication phenotypes.

The International Spinal Cord Society and the Ameri-

can Spinal Injury Association (ASIA) collaborated to cre-

ate the ISNCSCI,22 which has evolved over decades of

refinement. Standardized examination procedures are

used to determine the AIS, a single ordinal severity

score, and the ISNCSCI ordinal motor and sensory test

scores are often treated as interval measures.88 The pri-

mary classification tool is the ISNCSCI score sheet A.

FIG. 5. Syndromic classification of spinal cord injury. (A) American Spinal Injury Association (AISA)
impairment grade scale is defined by only four distinctions, left arrows. Important syndromic effects of
spinal cord injury span these grades, as illustrated for autonomic dysfunction, metabolic syndrome, and
neuropathic pain. (B) Resilience is an important emergent factor in living with a spinal cord injury. Allostatic
load may reduce resilience. Five possible individuals (shown by different shapes) are mapped to the
Allostatic Load-Resilience Axes according to the severity (shown as size) of neuropathic pain, metabolic
syndrome, accelerated aging, and the mitigating factor of intensive exercise.
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Data are entered, summarized, and checked according to

online algorithms to define the neurological level of in-

jury (NLI), AIS (incompleteness status), and motor and

sensory preservation patterns.89 This visual mapping

and numerical methodology form the current nosology

of SCI, allowing the extraction of SCI patterns such as

central cord injury.

The widespread international adoption of ISNCSCI

facilitates consistent communication and comparison

among rehabilitation institutes, research studies,90 and

across languages.91 The assessments are low-cost and

practical to describe changes in the neurological preser-

vation map over time.92 However, the ISNCSCI requires

significant training and incorporation of updates, is time-

consuming is subject to classification errors,93 is insen-

sitive to subtle neurological recovery,94 and does not

always align with function. An ‘‘expedited’’ version

has been developed to shorten the assessment duration

for initial screening examinations.95 Standards of auto-

nomic assessment have also been established to provide

standardized assessments for residual sympathetic and

parasympathetic function.96

Sources of classification heterogeneity affecting

ISNCSCI include a lack of incorporation of non-

neurologic injuries such as limb fractures and nerve and

muscle injuries, which can reduce motor and sensory

scores not directly attributable to the SCI and exhibit dif-

ferent recovery profiles. To address this issue, the

ISNCSCI has added an asterisk to the recorded score,97

a practical but abstract qualifier.

In up to 80% of patients, traumatic SCI results in

multi-system injuries whose long-term impact is poorly

understood. Acute systemic trauma measures, the Abbre-

viated Injury Score, the Injury Severity Score (ISS), and

the Acute Physiologic Assessment and Chronic Health

Evaluation II (APACHE II) score are used for mortality

prediction.98–101 Multiple organ dysfunctions are fre-

quent during intensive care after traumatic SCI.102 The

Spinal Cord Injury Risk Score, specifically designed to

integrate overall trauma burden in acute SCI, demon-

strated superior mortality prediction compared to ISS in

a machine learning analysis.103 A multi-variate Fine-

Gray cumulative risk model predicted the duration of

intensive care unit (ICU) stay and mortality by incorpo-

rating neurological level, total motor score, and organ

failure defined from laboratory values and ventilatory sta-

tus at Day 4 post-SCI,104 demonstrating that ISNCSCI

could be modeled together with critical care variables.

Limitations of current classifications: Abstract
reductionist systems
Given the multitude of systems changes after SCI, a five-

category AIS classification22,105 based on two criteria

(motor/sensory) is overly reductionist. Significant conse-

quences of SCI, such as neuropathic pain, spasticity, and

dysautonomia, can span several AIS categories (Fig. 5A).

FIG. 6. Network model. This is possible network model presented in a modular and interconnected
systems medicine framework composed in Cell Designer Version 4.4.2. Key nodes are maladaptive
neuroplasticity, mitochondrial dysfunction, dysautonomia, treatment effects, and chronic injury.
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AIS is sometimes used circularly, such as when it is as-

sumed that AIS B status predicts conversion to AIS C.

This relationship appears meaningful but provides almost

no mechanistic information. Thus, the AIS and ISNCSCI

are ordinal neurological severity scores useful to specify

the neurological level and motor and sensory impair-

ments, with limited correlation to changes in func-

tion106,107 unless combined with other clinical tests.108

Ordinal measures cannot provide the mechanistic insights

of systems medicine approaches109,110 to capture the dy-

namic, multi-system disrupted state of SCI where several

factors interact to influence recovery trajectories and

chronic life with SCI.111 Major secondary complications

such as neuropathic pain, heterotopic ossification, spas-

ticity, and dysautonomia112,113 may be significantly dis-

abling despite limited motor and sensory recovery. Due

to familiarity, the ISNCSCI has greatly dominated as a

SCI clinical trial outcome measure obscuring other out-

comes of importance.

Other Predictors of Patient Recovery after SCI
The post-SCI recovery phase, mainly the first year, is

when most patient data has been acquired during acute

and rehabilitation periods. Recovery prediction is domi-

nated by SCI severity, rostral-caudal level in the neural

axis,114-116 and age.117,118 Incomplete,119,120 more cau-

dally located injuries with less severe MRI findings are

associated with more motor recovery.115 Extrinsic sour-

ces of recovery trajectory variation include early transfer

to Level 1 care,121 time to surgical decompression,122 and

timing of rehabilitation.121 Longer-term external influ-

ences include contextual and motivational factors such

as activity intensity and participation.123

Multi-variate models have been developed to predict

functional outcomes based on current classifiers. Wilson

and colleagues developed a model to predict indepen-

dence at one year using linear and logistic regression.116

Bootstrapping was used to assess the robustness of the

model.116 The model was simplified by dichotomizing

total motor scores and converting AIS into a number.

A systematic review assessed Motor FIM (mFIM) re-

covery predictors using the International Classification

of Functioning, Disability, and Health (ICF) domains of

body structure and function, activity, participation, and

context.123 The strongest positive predictor was rehabili-

tation duration, while older age and delayed admission to

rehabilitation predicted less mFIM recovery. Vulnerabil-

ity to depression and anxiety has also been linked to less

favorable functional outcomes.124-126 Recovery is thus a

broad concept with multiple intrinsic and extrinsic con-

tributing factors.

Predictors of mortality
Mortality rates after SCI have decreased over time,127

with high-level cervical injury and completeness as con-

sistent predictors.12 Multi-system injuries, comorbidities,

age, frailty, and concurrent traumatic brain injury corre-

late with higher in-hospital mortality rates.54,128,129

Chronically, cause-specific mortality is substantially

higher in people with SCI than in the age-matched

general population, with respiratory, cardiovascular,

and urogenital problems being the leading causes of

mortality.130,131

Demographic predictors
Complex sociodemographic factors influence a patient’s

care and recovery. Demographic factors are not generally

incorporated into SCI recovery models, but biological

sex,132,133 race, and ethnicity134,135 influence neurological

outcomes. Other sociodemographic factors, such as educa-

tion, social support, language, insurance status, attitudes to

disability, and re-employment136 impact treatment and re-

covery. To enhance predictive modeling, SCI researchers

and clinicians should aim to incorporate race, ethnicity,

and socioeconomic variables in their analyses.137

Biomarker Modeling in SCI Prediction
and Prognostication
Significant effort has been devoted to developing SCI

biomarkers to achieve more individualized outcome pre-

dictions and to inform pathophysiology. Biomarkers are

fundamental to precision medicine. Accurate outcome

modeling is essential for designing clinical trials and

interpreting therapeutic effects in the context of patient

heterogeneity, especially in incomplete SCI (AIS B-D),

where large standard deviations in outcome values are

observed. This variability has necessitated enrolling

large patient groups for treatment research, which can

be impractical.138

Therapeutics development requires pharmacodynamic

and surrogate endpoint response biomarkers139 to add an

unbiased quantitative dimension to prediction algorithms

based on AIS and ISNCSCI outcomes. As defined by the

National Cancer Institute, biomarkers are ‘‘biological

molecules found in blood, other body fluids, or tissues

that serve as indicators of a normal or abnormal process,

or of a disease or condition.’’ For SCI, structural, physi-

ological, and molecular biomarkers are described.

To clarify the value of biomarkers for prediction and

mechanistic pathobiology, it is essential to understand

whether they are ‘‘indirect’’ descriptive injury markers

or mechanistic components in disease pathogenesis.140

Some quantifiable disease biomarkers embedded in

other disease molecular mechanisms are amyloid-beta

and tau proteins, while others such as C-reactive protein

(CRP), and hemoglobin A1c are established disease surro-

gates. The Biomarkers, EndpointS, and other Tools

(BEST) glossary was created by the U.S. Food and

Drug Administration (FDA)-National Institutes of Health

(NIH) Biomarker Working Group to promote consistency,
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clarity, and harmonization in the use of terminology re-

lated to biomarkers, endpoints, clinical research tools,

and therapeutic product development.141 An important

distinction is that between predictive and prognostic bio-

markers.142

Biomarkers of structural injury: Magnetic
resonance imaging
MRI revolutionized our understanding of injury patterns

and pathophysiology after SCI by directly visualizing in-

jured tissue, influencing patient classification, treatment

plans, and prognosis (Supplementary Table S2).143 MRI

allows visualization of compression, edema extent, hem-

orrhage, and tissue disruption, which can be quanti-

fied.144 MRI has been used to predict neurological

injury severity145 and outcomes146–149 with some struc-

tural markers correlating with recovery and secondary

conditions in chronic phases.149,150 According to the

BEST definitions, MRI can be a diagnostic, prognostic,

monitoring, and safety biomarker in different contexts.

Injury severity, marked by intrinsic signal changes in

acute T2-weighted MRIs, is most often correlated to clini-

cal outcomes.151 The Brain and Spinal Injury Center

(BASIC) MRI score, an ordinal scale describing five pat-

terns of intramedullary T2 signal abnormalities in axial

T2-weighted images, has been correlated with AIS scores

during hospital admission and discharge.152 Other MRI

features correlating with clinical outcomes include detect-

able intra-axial blood, linear edema extent, and spinal cord

compression severity.153,154 Diffusion tensor imaging

quantifies axonal pathway disruption, while magnetization

transfer imaging signal changes have been associated with

neurological function and outcomes.155,156 Currently, MRI

is primarily used as a structural as opposed to mechanistic

molecular biomarker but functional MRI, connectomics,

spectroscopy, and integration with neurophysiology may

reveal mechanistic changes related to the evolution of

post-SCI phenotypic states such as neuropathic pain.157

Projects such as Enhancing Neuroimaging Genetics

through Meta-Analysis (ENIGMA) correlate brain struc-

ture changes to regional gene expression.158

Biomarkers from CSF and blood
After SCI, tissue damage and blood-brain barrier disrup-

tion cause cell content leakage into serum and CSF.159

Several serum and CSF biomarkers have been linked to

neural tissue injury severity and neurological out-

comes,160 with serial assessments capturing dynamic

changes being more informative than single time-point

cross-sectional analyses.161,162 Certain biomarkers have

potential for patient stratification in clinical trials,160,163

monitoring therapeutic responses139 and indicating tar-

gets for new therapies.164

Fluid biomarkers studied for correlation to pathologic

consequences include structural cytoskeletal,165,166 cyto-

plasmic cytokine signaling proteins, lipids, and micro-

RNA (miRNA; Supplementary Table S3).167,168 Blood

reflects systematic injury responses,169 including acute

response and coagulation systems,170 whereas CSF is

more directly linked to the injury region.

Cerebrospinal fluid biomarkers. Spinal CSF pressure

monitoring in trauma protocols allows for serial

CSF159,160 sample collection, enabling retrospective cor-

relations between structural and inflammatory biomarker

combinations, AIS grade conversion, and motor score re-

covery.79,171 One prognostic model using S100b, glial

fibrillary acidic protein (GFAP), and IL-8 levels at 24 h

post-injury predicted acute AIS grade with nearly 90%

accuracy.159 Another model using IL-6, IL-8, MCP-1,

tau, S100b, and GFAP predicted AIS grade conversion

with 80% accuracy.

Serum biomarkers. Serum spinal cord structural injury

biomarker concentrations are lower than in CSF but also

have been correlated with probable AIS at different time-

points after SCI. Elevated blood levels of GFAP, neuron-

specific enolase (NSE), and phosphorylated heavy and

light subunits of neurofilament (pNF-H/L)172 correlate

to more severe acute traumatic SCI.165,173 NF-L levels,

established as biomarkers in neurodegenerative dis-

eases,174 were significantly associated with ASIA motor

scores at baseline, 24 h, and 3 and 12 months post-

injury.165 In North American Clinical Trials Network

(NACTN) studies of riluzole neuroprotection, serum

pNF-H levels have been correlated to an optimal neuro-

protective dose.139 The protein degradome, reflecting

the proteolytic activity of critical injury enzymes such

as calpains and matrix metalloproteases, provides an

index of their activity in injured tissue.175,176

Inflammatory response biomarkers
Inflammation is a complex multi-system process that can

be both beneficial and harmful. Increased inflammation is

a major secondary effect of traumatic SCI with both ex-

tensive local injury and systemic inflammatory re-

sponses. Most complications following SCI have been

linked to inflammation. Tumor necrosis factor alpha

(TNF-a) and interleukin 1-beta (IL-1b)177 are important

inflammatory signaling cytokines evaluated as predictive

biomarkers. The inflammasome protein complex ampli-

fies inflammation through caspase activation of IL-

1b178 and pyroptosis.179

Additionally, insulin-like-growth-factor 1 (IGF-1),

transforming growth factor b (TGF-b), and soluble

CD95 ligand (sCD95L) have been observed to increase

following SCI. Patients with higher initial IGF-1 and

sCD95L levels showed no improvement at 3 months

post-SCI, while elevated IGF-1 was associated with neu-

rological recovery in another study.161,180 Elevated TNF-a
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has been associated with both the development of the

neuropathic pain syndrome181 and recovery probabili-

ty.177,182 Merely measuring the quantity of these bio-

markers is insufficient; a comprehensive framework

that correlates the levels with patient outcomes is neces-

sary for meaningful interpretation. Quantitative biologi-

cal approaches are strengthened when a biomarker

quantity is continuously linked to disease severity, such

as NF levels in neurodegenerative disease.174

Peripheral blood test laboratory biomarkers
Peripheral blood test laboratory biomarkers, such as

neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte

ratio (PLR), initially identified as prognostic markers in can-

cer183 and sepsis, show promise as systematic response

markers following SCI. Elevated NLR has been correlated

with increased respiratory infection incidence and reduced

AIS conversion,184,185 while neutrophil percentage-to-

albumin ratio (NPAR) indicates a reduction in the important

plasma free radical buffering of albumin.186 Acute Respira-

tory Failure (ARF) is a severe complication of acute cervi-

cal SCI associated with high mortality. A predictive

nomogram including admission NPAR, PLR, hemoglobin

level, AIS, and NLI above or below C4 predicted the risk

of ARF,187 although models incorporating these markers re-

quire broader validation. Lymphocyte markers are associ-

ated with post-SCI immune depression syndrome.

Bioinformatics biomarkers
The serum and CSF biomarkers discussed above have

primarily been related to injury magnitude and correlated

to AIS and ISNCSCI outcomes. Bioinformatics ap-

proaches differ by applying much more comprehensive

assays to uncover molecular signaling networks.

Genetic variants as biomarkers
Genetic differences, such as single nucleotide polymor-

phisms (SNPs), contribute to variability in outcomes for

patients with similar baseline neurological exams.

Genomic analysis has uncovered polymorphisms rele-

vant to SCI recovery variability, including variations in

Brain-derived neurotrophic factor (Val66Met)188 and

glial cell line-derived neurotrophic factor, cytokines

(IL-6), and neurotransmitter receptors.189 An allele of

the Apo-E gene (APOE*e4)190 is associated with less re-

covery (Supplementary Table S3)191,192

Proteomics biomarkers
Proteins are molecular engines of life processes such as

DNA translation and oxygen transfer. Protein expression

varies significantly among different cell types, and post-

translational modifications, such as phosphorylation,

modify protein function. Proteins interact in signaling

complexes and control the functioning of the cell mem-

brane and gene expression.

Systems medicine tools to understand the interaction

and signaling between proteins are based on collecting,

verifying, and integrating thousands of experiments

within open-source molecular interaction network analy-

sis platforms, such as Cytoscape.193 Ingenuity Pathway

Analysis tools such as Causal Network Analysis (QIA-

GEN) provide context for omics dataset analysis, allow-

ing researchers to identify upstream proteins interacting

with the targets of interest. Clustering algorithms based

on the ‘‘guilt-by-association’’ principle infer protein-

protein interactions.194 Proteomics assessments have

been used to compare human and research animal SCI

responses to establish their mechanistic basis for pre-

clinical validity. In a proteomics assessment comparing

injured tissue from the rodent SCI model to acute

human injury CSF,10 three common primary modules

were identified: neural death, metabolic dysfunction,

and cell growth and aging.10 Another proteomics study

compared CSF and serum between human and experi-

mental porcine SCI. Although the earliest time-points

post-injury were similar, several human responses oc-

curred later than in pigs. In both species, GFAP elevation

was associated with injury severity and neurological out-

come.195 Proteomics, like other omics analyses, requires

robust methods for false positive detection due to multi-

ple testing.

MicroRNA biomarkers
MicroRNAs are short non-coding RNAs that regulate

gene expression196 by binding to mRNA168 and inhibit-

ing protein synthesis. They are transported by exosomes

in the systemic circulation,197 and regulate immune func-

tion, inflammation, regeneration, cell death, neuroplastic-

ity, motor recovery, and pain responses198,199 following

SCI. miR-146a, one of the most abundant CNS miRNAs,

is associated with several diseases due to polymorphisms

that affect its functionality.200 In experimental SCI,

miR-96 had neuroprotective effects, promoted cell prolif-

eration, and reduced inflammation and apoptosis.167

miR-21 has been widely studied and found to affect mul-

tiple organ systems with roles in inflammation, cell pro-

liferation, and apoptosis. Its dysregulation has been

implicated in cancer, heart disease, and autoimmune dis-

orders. In experimental SCI, miR-21 reduced cell apopto-

sis by decreasing the expression of critical genes such as

PTEN and Fas ligand.201 Patients with degenerative cer-

vical myelopathy have been observed to have elevated

plasma levels of miR-21.202 Moreover, in a miR-21

knockout mouse model of cervical myelopathy, there

was a notable reduction in microglial activation.202 In ex-

perimental SCI, miR-96 had neuroprotective effects, pro-

moted cell proliferation, and reduced inflammation and

apoptosis.167 In chronic SCI patients with neuropathic

pain, there was a significant reduction in serum levels

of miR-338-5p known to downregulate NMDA receptor
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signaling,203 and exosomes were found to contain miR-

NAs associated with accelerated vascular inflammatory

disease in another study.204

Limitations of body fluid biomarkers
Many markers obtained from serum and CSF after injury

are recovered outside of their functional tissue-level con-

text, which may leave their mechanistic relevance unclear.

Examples include GFAP and NF, which reflect structural

contents released from damaged cells without apparent sig-

naling functions. Likewise, the tissue sources of genetic sig-

naling molecules like miRNA or inflammatory cytokines

may be unknown. Limitations like specificity, dynamic

changes, and assay standardization must be addressed to

better understand fluid biomarkers’ role in injury responses

and improve diagnostic and therapeutic strategies.

Limited prediction of secondary conditions
SCI is thus characterized by sudden onset, gradual recov-

ery, and evolution into heterogeneous chronic states. The

extent of neurological recovery is considered the most

critical outcome for the long-term outlook of an SCI pa-

tient. Most SCI recovery measure descriptors are heavily

weighted to performance, such as operating a wheelchair

or walking capability.23 However, given that SCI evolves

into a chronic multi-system disease, other aspects of

health and resilience are critical. Thus, the relevance of

clinical assessments changes during injury evolution.

The ISNCSCI can be used as both a predictor-

independent variable and a dependent longitudinal out-

come measure. Still, as SCI evolves, secondary states

such as neuropathic pain can become more significant

to the affected person than small differences in neurolog-

ical scores. There are likely critical transitions between

states that occur after the injury that underlie the estab-

lishment of secondary conditions such as neuropathic

pain, metabolic syndrome, and dysautonomia.

Correlations without mechanism
Currently, few clinical outcome measures for SCI are

based on causal molecular mechanisms. Biomarkers

have been evaluated in relation to the ASIA/ISNCSCI

classifications using regression methods, but thresholds

are adjusted to fit ordinal categories lacking mechanistic

context. Retrospective correlation methodology is re-

stricted to the data classes within the records. Machine

learning (ML) techniques can potentially uncover previ-

ously unidentified correlations and latent relationships

within datasets.205

Mechanistically grounded variables
and outcome measures
Predictors that connect mechanisms to end-points can

have a powerful role in therapeutics development. In cys-

tic fibrosis (CF), tests measuring sweat production iden-

tified mechanistically significant biomarkers, leading to

the discovery of the CF transmembrane conductance reg-

ulator gene.206 Analysis of the sweat proteome revealed

mechanistically related abnormalities in protein func-

tion.207 These assays have been instrumental in develop-

ing corrective drugs for CF.208 Neuropathic pain209 and

spasticity210 are altered neurophysiological states amena-

ble to Physiome/neural network modeling and systems

biology network analysis that may be starting points to

build up a more comprehensive understanding of pheno-

type evolution in chronic SCI.211,212

Preserved spinal cord tissue
The extent of tissue preservation at the injury site is

closely associated with recovery potential, a core concept

in the SCI field.213 This premise forms the basis for neu-

roprotective and regenerative strategies. Clinical outcome

assessments in persons with SCI have been correlated with

the width of preserved tissue bridges on MRI.148,214 The

number of preserved axons is considered a meaningful

predictor of recovery and therapeutic effects.215 However,

this relationship is often weaker than expected, resulting in

a structure-function paradox.216 Over the past decade, epi-

dural and transcutaneous electrical stimulation has

revealed that connections supporting voluntary function

may exist with minimal preserved tissue.217

Neurophysiology
While the number of axons can be quantified in experi-

ments, it may not directly correspond to function. Evoked

potentials, including motor and sensory evoked poten-

tials, are clinically accessible biomarkers to assess pre-

served connections following SCI.218 A transcranial

motor evoked potential (MEP) conclusively demon-

strates a ‘‘functional’’ connection, with MEPs correlated

to the extent of preserved tissue bridges.149 When a ther-

apeutic targets a specific neurophysiological mechanism,

such as an ion channel, changes in evoked potentials can

serve as a mechanistic outcome measure.219

Integration of Bioinformatics, Biomarkers,
and Clinical Data
Clinical measures such as the perceived severity of pain

cannot foreseeably be replaced by entirely molecular

methods. For bioinformatics data to significantly advance

clinical insight in SCI, it needs to be integrated with

existing clinical classifications and metrics. This requires

several practical steps, including data curation, model de-

velopment and validation, and testing in clinical practice.

Bioinformatics has informed how chronic multi-system

disorders, such as diabetes and rheumatoid arthritis, prog-

ress through intracellular, intercellular, and organ interac-

tions.220 Disease-informing mechanistic insights include

genomic transcription, protein ensemble functions, and

systemic signaling via cellular, endocrine, and exosomal
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systems. Emerging biological paradigms such as the

miRNA interactome add mechanistic resolution to under-

stand disease progression and therapy responses.202,221

Multi-system mechanistic biomarker models have been de-

veloped to move beyond a single point of therapeutic focus,

such as the site of spinal cord damage, to integrate distrib-

uted multi-organ perturbations.222 By combining genetic

bioinformatics data with health information, researchers

can gain insight into how networks of altered gene expres-

sion are linked to disease characteristics.221 Clustering and

topological analysis help to identify the most significant

linkages, nodes, and critical variables.223-225 By identifying

the most important nodes driving disease evolution, new

customized treatment targets can be established.61,226

Challenges related to classification language
Harmonizing medical information is essential for systems

medicine to integrate potentially valuable but fragmented,

variably defined, and differently formatted data. Core prin-

ciples include data item standardization, quality assurance,

privacy and security, and interoperability.

The World Health Organization developed the Interna-

tional Classification of Functioning, Disability, and

Health (ICF)96 and the International Classification of Dis-

eases (ICD) to establish standardized frameworks for

global health communication. The ICF classifies health-

related states into Body Functions and Structures, Activ-

ities, and Participation, providing a unified standard

language and framework. The ICD and ICF mutually de-

fine disease components and their impacts on an individ-

ual’s abilities. Standardized classification systems enable

effective communication among healthcare providers, re-

searchers, and policymakers, facilitating the development

of tailored evidence-based interventions for individuals

with specific health-related conditions.

ICD, phenotype, and mechanisms
ICD is structured to provide a clear, unambiguous tree-

structured classification system. For instance, ICD-

11227 (ND51.2) defines spinal cord injury with a qualifier

(8B4Y) indicating a non-traumatic SCI cause. Using

ICD-11, a person with traumatic SCI can be characterized

by a cluster of secondary conditions such as chronic cen-

tral neuropathic pain (MG30.50), neurogenic bladder

(GC01.4), and spasticity (MB 50.1). ICD’s terminal

branch parsing structure organizes diseases into static

subcategories useful for diagnostic purposes but counter-

productive for developing a multi-systems framework.

Zhou and colleagues7 proposed revising ICD (as New

Classification of Diseases [NCD]) to align the phenotypic

ICD tree structure with critical molecular processes.

However, ICD disease boundaries were found to separate

pathophysiologic mechanisms that were similar between

diseases. Paralysis, autonomic dysfunction, neuropathic

pain, and spasticity are pathologies associated with SCI

that cross disease boundaries. Multiple sclerosis and

chronic SCI share neuroinflammatory mechanisms.29

The study of mechanisms influencing clinical pheno-

types in SCI models necessitates terminology methods

to integrate molecular details and conventional clinical

data. The Systems Biology Markup Language (SBML)

enables interoperability of biological process data for

computational models228 and multi-scale physiomes229

using extensible markup language (XML) that is both

human and machine-readable to define biological models

mathematically. Importantly, ICD-10 codes are available

in XML format. An illustration of using SBML for a

Physiome-like in silico Reactome pathway is Biomodels

Database Model:BIOMD0000000582, which displays

cellular aging’s impact on mitochondrial function (Sup-

plementary Fig. S2).230

A current limitation is that SCI is not categorized as a

‘‘disease’’ in the Human Disease Ontology dataset, for-

matted in Web Ontology Language format (OWL) de-

rived from XML, which integrates ICD and other

classifiers. It does not include ‘‘spinal cord injury,’’ but

instead includes several forms of ‘‘myelopathy.’’ There-

fore, developing a data language that recognizes SCI as a

multi-phenotype syndrome is an essential step to support

clinical and molecular data element harmonization.231

Data elements
Interoperability is crucial for computational process auto-

mation and data exchange.232 Different data sources, in-

cluding free text, lab test results, imaging, and

bioinformatics, can be interconnected by metadata mod-

els. The Systematized Nomenclature of Medicine

(SNOMED CT) classification methodology allows for

an individualized computational syntax and extensive

classifier terms.233 It evolved from pathology nomencla-

ture as a standard for electronic health records (EHRs), fa-

cilitating data reuse and information retention even when

indexed to other formats. As compared to ICD, which is

mono-hierarchical, SNOMED CT is a poly-hierarchical

coding system in which concepts may have multiple ‘‘par-

ents,’’ and thus link related conditions. It adds granularity

to spinal cord pathology indexing by including edema

(SCTID 65605001), ischemia (SCTID 371029002), and

demyelination (308634000). Natural language processing

(NLP) artificial intelligence (AI) search methods can be

configured to return text or DICOM information mapped

to SNOMED CT terms, and can remove Personal Health

Information (PHI) during the search.

Precise data definitions are crucial in research; com-

mon data elements (CDEs) enhance interoperability and

statistical power by enabling data aggregation in assess-

ing clinical treatment, during clinical trials,234-236 and

in meta-analyses. CDEs allow diverse studies to use stan-

dardized measures developed according to global meta-

data classification methodology, ISO/IEC 11179, to
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define entities and their attributes. The CDE property

term is the research question, such as ‘‘cause of SCI,’’

and the value domain includes a specified set of answers.

The National Institute of Neurological Disorders and

Stroke of the National Institute of Health (NINDS) de-

fined CDEs for major neurological disorders, including

SCI,237,238 following the FAIR principle—Findable,

Accessible, Interoperable, and Reusable. Accurate data

definitions are also important in conducting EHR

searches, with the Observational Medical Outcomes Part-

nership standardizing CDEs across EHR systems.239 The

NINDS SCI CDEs include demographics, medical his-

tory, medications, endocrine and metabolic function, im-

aging, electrodiagnostic, and laboratory testing.238 If

suitable standardization is achieved, CDEs could be ex-

panded to incorporate molecular profiling.240

Measurement properties
and statistical challenges
Accurate, statistically analyzable measurements are nec-

essary to predict and characterize neurological recovery

and function in SCI. A systems medicine approach does

not aim to replace existing outcome measures, which

are relevant and enable valid treatment comparisons.

Instead, it seeks to integrate multi-system data with vali-

dated measures to create models of SCI phenotypic and

mechanistic evolution using more complex data analytics

to potentially reveal causal factors.

The methods used to test associations in prognostic or re-

search contexts depend on the type and quantity of data var-

iables available. The Consensus-based Standards for the

Selection of Health Measurement Instruments (COSMIN)

provide a framework to evaluate outcome measures in the

key domains of reliability, validity, and responsiveness.241

Most existing SCI ordinal classification and recovery

scales can describe, but not explain, complex and compos-

ite multi-mechanistic phenomena such as ‘‘spasticity.’’

The absence of quantitative numerical intervals in clinical

scales may create statistical obstacles when integrating bio-

informatic data elements. However, clinical scales are

pragmatic and often derived through extensive clinical ex-

perience. It is of great interest to determine if their clinical

utility correlates with underlying mechanisms. A study on

Huntington’s disease effectively addressed this integrative

challenge by identifying genes associated with the specific

phenotype and correlating their expression levels with a

recognized ordinal classifier.242

Innovative refinements of SCI outcome measures to

improve statistical properties included a revision of the

Graded and Redefined Assessment of Strength, Sensibil-

ity, and Prehension (GRASSP) test based on Rasch anal-

ysis to reduce item redundancy and improve interval

properties.243 The Spinal Cord Ability Ruler (SCAR) is

a recently developed scale that attempts to linearize ordi-

nal ISNCSCI motor and SCIM scores.244

Evolution of statistical approaches to integrate
omics and clinical data
Data sets are typically analyzed to identify relationships

between dependent variables, such as motor score

change, and independent variables, like time to surgery.

While parametric model-based regression methods are

common in clinical research,245,246 SCI research increas-

ingly employs nonparametric methods, transitioning

from linear regression to mixed models that allow for

multiple intercepts and covariate control.

Parametric statistical methods require assumptions

about the distribution of the study population to calculate

the mapping function, mean, and standard deviation for

comparisons. In contrast, nonparametric techniques do

not require such assumptions. Linear regression is typi-

cally used for continuous data, while logistic, propor-

tional hazard, and mixed effect regression are employed

for categorical, survival, and longitudinal data, respec-

tively. Parametric methods may, however, perform better

than non-parametric methods in smaller data samples.

Parametric regression methods assume linear relation-

ships between predictors and outcomes, potentially over-

looking complex interactions and requiring special

consideration for predictor collinearity. Pre-defined re-

search parameters constrain the assessment of unmea-

sured factors’ impacts. In a complex problem like SCI,

a univariate regression analysis might show a strong cor-

relation that is actually due to other factors, necessitating

multi-variate analyses to control for additional contribut-

ing variables. In contrast, non-parametric regression

models identify significant associations from the data

without a predetermined model structure, necessitating

more data but offering greater flexibility in handling

complex, multi-dimensional data. These models are de-

veloped using training data sets, balancing overfitting

and underfitting, mitigating selection biases, and preserv-

ing input variable uniqueness. Non-parametric tech-

niques may also aid in imputing missing values.247

Dimensionality reduction
Omics data is characterized by large numbers of vari-

ables, as its use in medicine grows, it is essential to re-

duce data dimensionality to identify key variables that

explain the greatest amount of observed variance in se-

lected outcomes. Dimensionality reduction methods pre-

serve explanatory power while reducing features.

Principal Component Analysis (PCA) is often used for com-

plex multi-variate analyses. By separating co-correlated

groups of variables, PCA manages collinearity and helps

identify the most relevant factors. For instance, PCA was

used to determine the inflammatory cytokines most highly

correlated with limb weakness in ICU patients.248

While PCA is a valuable dimensionality reduction

technique, newer methods like independent component

analysis, t-distributed Stochastic Neighbor Embedding
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(t-SNE), and non-negative matrix factorization offer ben-

efits for specific applications in discovering gene expres-

sion modules.

Machine learning
The large clinical data sets increasingly used to develop

explanatory models for medical problems exceed

human analytic throughput capacity, necessitating effi-

cient computer-based approaches such as machine learn-

ing (ML). ML can improve the predictive accuracy of

software applications without explicit programming.

ML algorithms automate pattern recognition,249,250 pre-

dicting novel prognostic clusters by combining genetic,

clinical, and lifestyle variables.251 The success of ML al-

gorithms depends on proper labeling, aggregation, and

organization. Unsupervised ML can employ neural net-

works, deep learning, and artificial intelligence (AI).

Of importance, ML does not replace statistical infer-

ence because its objective is prediction, not causal expla-

nation. Also, ML-based decision support technologies are

biased by the patient attributes used to construct the mod-

els, meaning they perform best on patients similar to

those used in model development. The k-nearest neighbor

and support vector machine approaches are a prominent

nonparametric classification and regression method ap-

plicable to both systems biology252 and clinical datasets.

An example of ML capabilities is the use of the U.K.

Biobank, a repository of biological and medical data, in-

cluding Genome-Wide Association Study (GWAS), from

a cohort of 500,000 people. Using a combination of clin-

ical, lifestyle, and genetic data, researchers used archival

MRI data to distinguish between individuals with and

without non-alcoholic fatty liver and those with and with-

out evidence of CVD. ML methods such as naı̈ve Bayes

were used to construct a prediction model, resulting in a

regression tree of specific risk factor thresholds for the

development of severe CVD.251 Similar modeling has

been used to predict Alzheimer’s disease progression.253

Using NLP on unstructured data, deep learning can iden-

tify distinguishing variables to improve decision-making

in radiology.254

However, caution is necessary when using ML and AI,

as sampling bias, data collection methods, and statistical

approaches can all impact the algorithms and perpetuate

errors and inequality. Iterative cycling may improve

model performance as more data is incorporated. Reverse

causality and confounding must also be considered when

working with observational datasets.255

Data integration between EHR and curated
prospective datasets
ML can analyze data and identify new correlations, al-

though substantial validation is necessary.256 EHRs are

a vast source of clinical data that ML can utilize to answer

research and clinical questions.257 Effectively integrated

EHRs could also improve resolution in acute to chronic

SCI data gaps caused by transitions from acute care to re-

habilitation hospitals, and between in-patient to intermittent

out-patients encounters. Despite the potential of ML to in-

tegrate large quantities of clinical, laboratory, textual, and

imaging findings from patients with SCI, reliable anchoring

classifiers are essential when dealing with error-prone as-

sessments such as core neurological examinations. The cu-

rated prospective longitudinal NACTN registry dataset258

can serve as an anchor for ML nonparametric models in

SCI. Data, including comorbidities, laboratory results,

and patients’ medications, can be sourced from EHRs

alongside unstructured free text data from MRI, surgery, in-

tensive care, and medical records. This data could be

merged with existing datasets to develop decision-support

tools. Recently, data from the COVID-19 pandemic have

been incorporated into several critical care algorithms.259

Challenges include that clinical data collection and storage

techniques vary, reflecting institutional policies and opera-

tional procedures. EHR NLP methods must be standardized

and harmonized to ensure compatibility and consistency

across different EHR sources.

Unbiased recursive partitioning to create
prognostic SCI models
SCI is a condition affected by multiple sources of hetero-

geneity. Stratification methods are an approach to create

subgroups within data sets to reduce classification hetero-

geneity. One of the simplest stratification methods is by

AIS subgroup. In a comprehensive multi-variate analysis

using stratification, early infection was found to reduce

voluntary voiding recovery at one year in individuals

with AIS A-C, but not AIS D.260

Nonparametric regression utilizing recursive partition-

ing is a type of supervised ML stratification to parse large

SCI datasets using combinations of existing classifiers.

The unbiased recursive partitioning regression method

(URP-CTREE) has used AIS, ISNCSCI, and other data

(molecular/imaging) to improve neurological prognostica-

tion by reducing group heterogeneity. In this process, pre-

dictors related to the intended outcome are first identified,

and all potential predictor pairings are recursively ana-

lyzed until a two-sample linear statistic discerns the two

most distinct subgroups.261 This technique incrementally

creates homogeneous dichotomous groups from initially

heterogeneous groups based on model inputs and response

variables.261,262 This method mitigates the limitations of

AIS category breadth and provides more precise recovery

prediction by identifying refined homogenous groups with

similar outcome trajectories.263,264

However, unmeasured confounding variables can af-

fect nonparametric recursive partitioning and large data-

sets are required to uncover confounding factors in

apparently homogeneous groups.265 Multiple recursive

testing necessitates specialized false positive correction
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and bootstrapping the original dataset to assess model

overfitting. URP-CTREE has outperformed conventional

linear regression in cervical SCI outcome prediction261

and has been used to generate a pneumonia decision sup-

port tool for SCI266 and to predict walking outcomes

based on standard blood chemistry values post-SCI.267

Integrated modeling of clinical
and bioinformatics data
Bioinformatics contrasts with ISNCSCI, SCIM, and other

refined clinical scales by using large amounts of high-

resolution data with variable relevance, requiring effec-

tive organization methods. Syndromic SCI classification

might better align clinical data clusters and molecular

networks related to specific pathologies like neuropathic

pain and metabolic syndrome. Identifying prominent mo-

lecular changes necessitates comparison data from unin-

jured individuals and those with SCI, with and without

the syndrome of interest. Depending on the biological

sample sources, it might be feasible to construct datasets

representing inflammatory, immune, and metabolic sig-

naling to detect the most or least shared markers between

phenotypes. Changes in molecular modules can be cross-

checked against measured allostatic load and epigenetic

markers, and deviations from normative data might cor-

respond to increased allostatic load. Pathway Integromics

in Cancer268 has been used to synthesize bioinformatics

and clinical data into predictive and interpretive models.

Since most omics provide single time-point snapshots,

multiple sampling is needed to elucidate temporal

changes, identify non-linear properties,269 and critical

transitions. The high granularity of omics analyses may

obscure emergent factors,270 such as resilience.271

Gene expression and transcriptional regulation
in SCI
SCI and recovery are linked to changes in the expression

of hundreds of genes across several tissues and organs.

Transcriptomic data may be examined using differential

gene expression (DEG) and unsupervised hierarchical clus-

tering techniques. Adequate control data sets are essential

for DEG272 to identify genes with differing expression be-

tween SCI and control states, then hierarchical clustering to

discern if the differentially expressed genes belong to

meaningful clusters indicating co-regulation or a biological

pathway. In acute SCI, downregulated genes related to

neuronal function pathways, while upregulated genes sup-

ported inflammatory and immunological responses. Tran-

scriptomics analyses of the limited regeneration after SCI

have identified several molecular cascades controlled by

‘‘master’’ regulators,273 including mitogen-activated pro-

tein kinase (MAPK),274 ATF3,275 and PTEN.276 DEG

studies have identified that MAPK and Ccl3, a macrophage

inflammatory cytokine systemically transported in exo-

somes, are associated with the emergence of neuropathic

pain.277 In the TRACK-SCI program, whole blood cells

from acute SCI patients underwent unsupervised co-

expression network analysis. DEG and gene expression

modules were correlated to AIS grade,278 and differences

in immune cell modulation were observed between AIS

A versus AIS D patients.278

Network analysis
Omics data require network analysis tools to interpret

correlations, given the high biological complexity and

potential for non-linear and stochastic interactions be-

tween variables. These tools include gene-gene co-

expression, transcription factor regulatory networks,

protein-protein interactions, and signal transduction net-

works. When comparing control and injury datasets, the

null hypothesis of no difference is repeatedly tested,

and data is ranked by effect size and most significant p

values. Due to many comparisons, the false positive dis-

covery rate must be controlled using methods like the

Benjamini-Hochberg procedure.

The topology of clinical phenotypes and their molecu-

lar and physiological substructure may be deduced using

clustering coefficients and centrality measures using tools

like MCODE in Cytoscape.279 Topological transcrip-

tomic network analysis identifies probabilistic networks

that consist of nodes showing potentially causal relation-

ships between variables, with connected edges represent-

ing gene expression facilitation or inhibition (Fig. 5). The

path length between nodes may indicate the number of

signaling or genetic regulatory steps between nodes.

Unconnected nodes are considered independent variables

under the data acquisition conditions.280 Sample size, ef-

fect size, and false discovery rate influence the analysis,

and some information may be lost during feature extrac-

tion and dimensionality reduction.

Modeling of SCI as a Multi-System Disease
For decades, researchers have focused on the spinal cord

injury site, where the loss of neural integration and nor-

mal inhibition is followed by neuroplastic reorganization

that extends to organ system abnormalities.281 Although

much research has focused on the recovery of motor sys-

tems, a systems approach is naturally suited to the exten-

sive distribution of the autonomic nervous system

(ANS).282,283 Post-SCI pathological syndromes interact

in complex ways, that is, gut dysbiosis worsens systemic

inflammation,221 which in turn can accelerate CVD.284

An interactive systems model may offer greater explana-

tory power, enabling predictions not only for neurologi-

cal prognosis but also for estimating vulnerability and

resilience.285 Multi-system involvement in SCI has im-

plications for acute care, complication reduction,

recovery-promoting therapies, and life with chronic

SCI. Other multi-system diseases, including diabetes,

have undergone extensive modeling.
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A systems biology approach to SCI in subacute
and chronic stages
A systems biology framework can be both explanatory

and prognostic, an important distinction.286 We propose

using clinical phenotype clusters (e.g., AIS B-severe neu-

ropathic pain-prominent dysautonomia) to serve as an-

chors for molecular network assessments, critical

transition events, and the generation of Physiome models.

We suggest an initial approach to SCI systems-medicine

via multi-variate modeling casting a wide variable net

across different scales,287 including demographics factors

(age/sex), AIS, MRI injury severity, multi-organ injury,

serum biomarkers, genetic characterization (GWAS) to

identify relevant SNPs, peripheral blood inflammatory

response and immune depression markers, autonomic

instability and blood pressure, complications, and

microbiome changes.288 Serial measures are important

to understand how phenotypes such as neuropathic

pain and metabolic syndrome evolve, the impact of allo-

static stress, and to assess epigenetic markers, including

aging.

Accessible specimens for systems biology. Omics

analysis can be performed on accessible specimens, in-

cluding serum, circulating blood cells, microbiome sam-

ples,289 and limited tissue biopsies such as muscle.

Peripheral blood mononuclear cells provide information

pertinent to inflammation, immunity, and metabolism

after SCI.290,291

Notable phenotype-bioinformatics studies include

using Systems Biology Cohorts of Veterans and active-

duty military personnel, investigating molecular dif-

ferences between those with and without diagnosed

post-traumatic stress disorder (PTSD).292 In this study,

the phenotype condition was dichotomized (has/has

not) and compared with blood cell–derived genetic, epi-

genetic (methylation), transcriptomic, miRNA, proteo-

mic, and metabolomic assay data. Topological patterns

across the data were assessed using multiple tools, in-

cluding weighted gene co-expression analysis and Con-

sensus Topological Overlap. Notable findings included

heightened inflammatory responses to stress, high levels

of protein phosphorylation, and reduced neuron projec-

tion markers. Notably, PTSD has been linked to allostatic

load and mitochondrial dysfunction.293

Some clinical studies have found correlations between

proteomic patterns and neuropathic pain.294 It is believed

that several forms of pain sensitization disorders share

mechanisms. Complex regional pain syndrome-

associated genes have been identified through RNA

transcriptomics from the blood of affected patients,295 re-

vealing epigenetic DNA methylation changes in inflam-

mation and immune-regulating genes.38 In the Veterans

Integrated Pain Evaluation Research study (VIPER),296

amputees with phantom pain were dichotomized based

on pain scores greater or lesser than 3/10, and their

blood samples were analyzed using an extensive neuroin-

flammation panel. The model also assessed pain cata-

strophizing, which might be considered an analog of

reduced resilience. The two independent categorical

groups in the cross-sectional study were compared

using a Mann-Whitney non-parametric U test with cata-

strophizing modeled as an indirect effect.297 A validating

study cohort was created employing the BioVu DNA

biobank; the deidentified GWAS dataset was used to ex-

amine the correlation between epigenetic changes and

ICD-9 pain phenotype diagnostic codes found in the Syn-

thetic derivative, a Vanderbilt de-identified EHR data-

base, providing a control group of 20,000 records.38 A

further study using BioVu examined for shared polygene

profiles across multiple pain types with combinations of

SNPs assessed against EHR ICD classification pain

data using PCA.298

The autonomic nervous system multi-organ
integrative system
The ANS regulates homeostatic processes such as im-

mune function through the sympathetic-adrenal medul-

lary axis, hypothalamus-pituitary brainstem axis, and

parasympathetic systems.299,300 Post-SCI ANS abnor-

malities may be primarily related to neural axis injury

level or injury completeness.36,301 Initial post-injury neu-

rogenic shock, caused by loss of sympathetic tone, pre-

dicts poor neurological recovery.6 Severe cervical SCI

ANS disruption leads to immune dysfunction through

splenic atrophy,302 altered metabolism,303 and suscepti-

bility to septic shock.304

Injury above T6 is a crucial threshold for disturbed

autonomic regulation due to the loss of control over the

splanchnic vascular bed. Chronic post-SCI blood pres-

sure instability is more common than previously under-

stood.305,306 Autonomic dysregulation leads to the

uncontrolled release of catecholamines and glucocorti-

coids, impairing immune function.307 Autonomic dysre-

flexia (AD) occurs when a normal sensory stimulus

inappropriately results in severe hypertension. AD can

depress the immune system, increasing infection risk by

reducing splenic leucocytes and increasing glucocorti-

coid release.32,308 Indicators of ANS injury severity in-

clude low serum norepinephrine and low-frequency

systolic blood pressure fluctuations.309 Increased allo-

static load and autonomic dysfunction have been linked

to several neurodegenerative diseases.310

Quantification of allostatic load
Allostatic load (AL), a measure of stress-induced physio-

logical and somatic damage accumulated over the

lifespan’’311 may inform the SCI systems medicine-

Physiome approach52 and provide therapeutic targets. Allo-

static load indexes (ALI) include physiological and serum
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biomarkers of inflammation, neuroendocrine, metabolism,

cardiovascular health, and body mass index.312 Originally,

ALI assigned a score of 1 for each composite measure out-

side a population-specific biomarker upper limit, yielding a

score from 0-8.313 The low-frequency component of heart

rate variability (HRV), impaired by sympathetic disruption,

is also considered a quantitative measure of allostatic

load.309,314,315 Epigenetic changes, including CpG methyla-

tion, indicative of biological age,316 have been correlated to

allostatic stress measures.317

AL has been linked to hypercortisolemia, gut micro-

biota dysbiosis, elevated proinflammatory cytokines,

decreased synaptic plasticity, and hypothalamic-

pituitary-adrenal (HPA) axis disruption.318 In individu-

als with SCI, conventional AL indexes may require

modification due to cardiovascular and HPA axis disrup-

tion,52,319 with metabolic, neuroendocrine, cardiovascu-

lar, and immunological markers proposed for inclusion

in an allostatic burden index.52

Mitochondrial performance, impaired by AL, is a

major physiological and molecular contributor to health.

Its dysfunction impairs cellular metabolism, generates

toxic free radicals, and induces apoptosis.56 In a cross-

sectional study, markers of metabolic syndrome, such

as increased visceral adipose tissue, elevated IL-6, and

CRP,320 and low testosterone, predicted mitochondrial

dysfunction.321 Additionally, adrenal dysfunction can in-

crease cortisol, norepinephrine, and glucose levels, trig-

gering mitochondrial fragmentation.322,323

Sleep dysfunction and circadian variations increase

allostatic stress.324,325 Variations in the microbiome can

mitigate or worsen AL,318,326 and dietary factors can

modify oxidative stress through important signaling mod-

ules such as NF-Kappa B.327 AL is also associated with

external factors such as low socioeconomic status.328

Factor analysis could be used to assess SCI-specific allo-

static stress indicators to identify the most contributory

parameters.329

Emergent conditions of relevance to spinal cord
injury systems biology

Resilience and frailty. Resilience can mitigate allostatic

stress. Resilience, a multi-dimensional concept, is an essen-

tial determinant of outcomes after SCI.330 Biologically,

resilience represents the system’s capacity to return to its

baseline state after stress, thus mitigating AL by lowering

the response magnitude to stressors. It shares biological

markers with AL indices, including cortisol, HRV, and im-

mune cell reactivity. Additionally, resilience is enhanced by

certain 5-HT gene polymorphisms.51,331 Its opposite, frailty,

is an emergent state resulting from dysregulation in multiple

systems that predicts morbidity and mortality post-SCI.54 It

is assessed through measures of homeostatic perturbation,

such as the Mahalanobis distance, which serves as a

multi-variate index for comparison to initial or average

undiseased states.332-334

Chronic pain. Pain, as a stressor, is linked to AL335 and

affects many individuals with SCI chronically, with mul-

tiple effects at the brain and physiological levels. Neuro-

pathic pain is a recognized AL source correlated to

biomarker predictors,24 including MRI ventral tissue

preservation336 and thermal pain adaptation,337 and is

mitigated by resilience.338

Metabolic syndrome. Metabolic syndrome is a pro-

inflammatory source of allostatic stress and accelerated

aging.339 SCI leads to muscle atrophy and diminished

endocrine myokine upregulation340 after exercise.341 In

chronic SCI, cross-talk between muscle and bone regulates

their respective catabolism after SCI,342 and high fat-to-

lean body mass ratios associate strongly with metabolic

syndrome and systemic inflammation.343 Injury level–

dependent leptin levels increase, and leptin resistance im-

pairs satiety, aggravating obesity.344 Metabolic syndrome

can also cause brain dysfunction due to abnormal glucose

metabolism.345 The Virtual Metabolic Human Database is

an example of a systems medicine resource that integrates

microbiome metabolism with nutrition and disease.346

Aging. Accelerated aging, a multi-system emergent

effect, can occur due to increased AL after SCI328,347

and be measured with epigenetic clocks.316 In individuals

with MS, increased aging has been detected in neu-

rons.348 A reliable indicator of physiological dysregula-

tion and AL is the statistical distance of composite

biomarkers from normative values.349 These models pre-

dict mortality, adaptive capacity, and allostatic burden350

and could be adapted to SCI.

Exercise as a multi-system treatment. Immobility

leads to complications and increased comorbidities.351

Exercise, a multi-system therapy, mitigates allostatic

stress post-SCI,352 with HRV as a response biomarker.353

Exercise can reduce neuropathic pain,354 mitigating ab-

normal transmembrane chloride.355 In uninjured individ-

uals, exercise induces epigenetic changes in skeletal

muscle, including microRNA changes.356 Even after

electrical-stimulation-evoked muscle exercise in people

with SCI, epigenetic methylation changes are detectable

in multiple genes.65 In rodent experimental SCI, exercise

reduced injury cavity size and increased DNA demethy-

lation in the brain.357

Assembling the SCI systems medicine model

Multi-phenotype classification. Systems biology mod-

eling can be approached either through a granular

bottom-up or simplified top-down approach.358 To
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develop a multi-systems SCI framework, we have consid-

ered the integration of bioinformatics, physiological,

allostatic, and clinical data (Table 2; Supplementary

Fig. S3). We propose classifying SCI using a syndromic

model with secondary conditions and their severity as

phenotypes (e.g., Fig. 6).

Patient similarity networks could provide a framework

to assess SCI phenotype heterogeneity and to identify pa-

tient subgroups. In this approach, patients are represented

as nodes, and connections are established based on simi-

larities. As a top-down approach, we propose to map

individuals with SCI based on clinical phenotype-

secondary condition clusters and subsequently test for

correlations to bioinformatics data. Alternatively, a gran-

ular bottom-up approach is to perform unsupervised

learning analysis on the patients integrated clinical and

bioinformatic data to assess for related clusters. By exam-

ining the relationship between complication phenotypes

and molecular clusters, we can detect critical nodes un-

derlying phenotype evolution using network analysis.

ANS Physiome. SCI is a syndrome of multi-system per-

turbations with a spectrum of evolved secondary states

affecting individuals. Although there are currently no

SCI Physiome models, the ANS shows promise in under-

standing post-SCI states due to its broad multi-organ distri-

bution, measurable variables such as blood pressure and

HRV, known anatomical connections, and neurotransmit-

ters. Developing an ANS Physiome could incorporate in-

dices of allostatic stress, metabolic syndrome, chronic

inflammation, and maladaptive immune responses.

The PINE model (Psycho-immune neuroendocrine

Physiome) was designed as a systems medicine approach

to major depressive disorder.60,359 It integrates the HPA

axis, the ANS, and metabolic immune and inflammatory

cytokine signaling.359 By incorporating key molecular in-

teractions, the PINE model addresses disrupted homeo-

static function caused by chronic stress, which

generates AL and increased risk for major depression.

Creating an ANS Physiome requires model validation

on different datasets, simulations with varied input

parameters,20 and testing across diverse populations to

ensure robust development. A successful ANS Physiome

model would enable predicting potential therapeutic con-

sequences through test inputs.

To integrate clinical phenotype, allostatic load data,

and molecular data from the same patients, it is necessary

to align and unify them in a standardized format. Clinical

phenotype data is analyzed to identify clusters represent-

ing distinct patient subgroups. To incorporate molecular

networks, allostatic load, and phenotypic clusters, mod-

ule detection or community structure analysis is utilized.

Statistical methods can then be applied to test the signif-

icance of associations and assess robustness using permu-

tation testing or bootstrapping.

To create tables for ML, a series of layers will be com-

bined to construct sets of data features (Table 2). This pa-

rameter matrix will be used in a stepwise data integration

strategy360 to derive labels and their relationships to de-

termine if multi-variate clusters (e.g., GWAS, inflamma-

tory) align with individual phenotypes (e.g., complete

injury with neuropathic pain, metabolic syndrome, and

advanced biological age). In the process, the strength of

the association of contributing variables to respective

phenotypes may be deduced, and the main molecular

drivers identified. Nodal interaction points between mo-

lecular changes and the Physiome models may be estab-

lished, with AL as a unifying axis/concept.

Syndromic classification of SCI. The layers used to con-

struct the initial data matrix are depicted in Table 2. The

axes of allostatic load and resilience may be useful for

mapping SCI syndromes (Fig. 6).

To progress towards this goal, we consider the follow-

ing steps:

1. Conducting a patient similarity network analysis

from adequate datasets to establish initial categories

Table 2. Syndromic Formulation of Spinal Cord Injury: Data Layers

Demographics Age, biological sex, time since injury
Covariates Prior diabetes, cancer, mental illness
Clinical measures AIS, ISNCSCI, SCIM, spasticity, autonomic standards, neuropathic pain, CDEs.
Clinical events Infection, hypotension, surgical decompression, depression
Phenotypes ICD codes, SNOMED CT
Predictive Biomarker MRI, acute serum and CSF injury biomarkers if available.
Autonomic variables SCI standards, HRV, orthostasis, dysreflexia
Drugs and treatments E.g., Baclofen, gabapentin, antibiotics
Bioinformatics Genetics. GWAS as available, miRNA, SNPs Inflammatory, immunologic, metabolomic,

and microbiome markers
Allostatic load SCI Allostatic load index, biological clock
Chronic phenotypes. Metabolic syndrome Biomarkers, metabolic syndrome severity index/scale
Chronic phenotypes. Neuropathic pain Pain scales, neuropathic features
Resilience measures Exercise capacity and intensity, personal autonomy,

AIS, American Spinal Injury Association Impairment Scale; ISNCSCI, International Standards for Neurological Classification of Spinal Cord Injury;
SCIM, Spinal Cord Independence Measure; CDE, common data element; MRI, magnetic resonance imaging; CSF, cerebrospinal fluid; HRV, heart rate
variability; GWAS, Genome Wide Association Study; miRNA, microRNA; SNP, single nucleotide polymorphism; SCI, spinal cord injury.
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based on phenotype-secondary conditions, thereby

identifying groups of patients with similar charac-

teristics.

2. Encode phenotype clusters in language suitable for

ML.

3. Perform network analyses to determine if consistent

molecular network modules underly phenotype-

secondary conditions.

4. Create initial systems Medicine Models for valida-

tion testing.

5. Refine the current measures of allostatic load to

ensure their specificity to SCI.

6. Develop the SCI-ANS Physiome, a model to inte-

grate SCI and autonomic alterations with clinical,

allostatic load, and bioinformatics data at relevant

time-points after SCI.

Limitations of an allostatic load systems
medicine-Physiome model
A comprehensive understanding of SCI at a systems level

is important to therapeutic progress. However, the sys-

tems biology approach is at a very early stage, and mod-

els may be affected by several extrinsic factors that

contribute to variation in outcomes after SCI. Examples

of such factors include polypharmacy, the effects of anti-

biotics on inflammatory responses, and alterations in the

intestinal microbiome.361,362 Additionally, sociodemo-

graphic factors contribute to allostatic stress and may

be challenging to quantify accurately. Given the com-

plexity of the project, it is prudent to start by assembling

phenotype-molecular networks where substantial knowl-

edge already exists, such as understanding linkages be-

tween neuropathic pain and inflammation.277

Summary
Acute SCI is a critically dysregulated dynamic multi-

system condition characterized by multiple interacting

molecular and physiologic modules, some supporting

recovery and others producing chronic multi-system

dysfunction. Each patient’s presentation and recovery

trajectory are unique and influenced by multi-system,

multi-injury, environmental, social, and psychological

factors. Chronic SCI evolves through a multitude of al-

tered physiological and molecular events. By far, motor

function has been the axis on which recovery is mea-

sured, and in a general way, other systems are expected

to correlate. Current SCI classifiers are mainly ordinal,

predate the advent of bioinformatics, and lack biomolec-

ular grounding. Current data elements assign definitions

to multi-factorial and complex phenomena such as ‘‘neu-

ropathic pain’’ and ‘‘spasticity.’’

There are significant data gaps between the intense

acute care period, the limited acute rehabilitative period,

and the remainder of the individual’s life with chronic

SCI. Limitations of current classification and prediction

measures are evident in the disparities in recovery from

seemingly identical initial damage patterns. Clinical tri-

als falter because group means-based statistical ap-

proaches are inherently limiting for a condition with so

much individual variation. In addition to motor recovery,

emphasis should be placed on the prevention of second-

ary conditions that, once established, are difficult to re-

verse.

SCI disrupts homeostasis, leading to secondary condi-

tions that are established during the acute and subacute in-

jury periods. Integrative functions of the ANS are lost to

variable degrees. Allostatic stresses contribute to acceler-

ated aging and perpetuate complications such as neuro-

pathic pain, and eroding resilience. Although several

injury biomarkers have been identified as prognostic bio-

markers in SCI, many are descriptive and have not been de-

veloped into validated mechanistic or predictive models.

Considering the interactions among critical systems

after SCI, a systems medicine approach can support mod-

els of individual change over time and identify critical

transition states. However, the current multi-system mod-

eling of SCI is in early stages. It is important to identify

the most accessible systems and leverage existing re-

sources by assembling multidisciplinary expertise.6

The NACTN registry and associated sub-studies docu-

ment the acute to chronic injury phase, primarily in the

first year, focusing on neurological recovery to inform

natural history and the evidence basis to validate acute

care practices. NACTN investigators are committed to

enhancing recovery after SCI through advanced critical

and surgical care and therapies to mitigate injury138 and

potentiate neuroplastic and regenerative restoration.363

Attempting to understand the molecular and physiologi-

cal basis of secondary conditions within an integrated

framework has yet to be a research focus. For NACTN

to develop a systems medicine focus; important steps

would include the ability to access EHR data from asso-

ciated acute care and rehabilitation hospitals. Collabora-

tions would be needed to obtain and store genomics and

biological samples, conduct omics analysis, and integrate

the data into multi-variate data sets. Allostatic load mea-

surement could be initiated, especially in the early post-

injury period. If systems medicine approaches identify

critical nodal thresholds, ML-based decision support

tools could be derived to assist clinicians in optimizing

decisions to reduce the incidence and severity of chronic

SCI phenotypes. Understanding the temporal drivers of

SCI syndrome states should lead to new and more effec-

tive therapies.

Transparency, Rigor,
and Reproducibility Summary
This review does not report primary data.
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