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Importance of Prospective Registries
and Clinical Research Networks in the Evolution
of Spinal Cord Injury Care
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Charles Tator,13 Elizabeth G. Toups,14 Michael G. Fehlings,13 Theresa Williamson,15 and James D. Guest16,*

Abstract
Only 100 years ago, traumatic spinal cord injury (SCI) was commonly lethal. Today, most people who sustain
SCI survive with continual efforts to improve their quality of life and neurological outcomes. SCI epidemi-
ology is changing as preventative interventions reduce injuries in younger individuals, and there is an in-
creased incidence of incomplete injuries in aging populations. Early treatment has become more intensive
with decompressive surgery and proactive interventions to improve spinal cord perfusion. Accurate data,
including specialized outcome measures, are crucial to understanding the impact of epidemiological and
treatment trends. Dedicated SCI clinical research and data networks and registries have been established
in the United States, Canada, Europe, and several other countries. We review four registry networks: the
North American Clinical Trials Network (NACTN) SCI Registry, the National Spinal Cord Injury Model Systems
(SCIMS) Database, the Rick Hansen SCI Registry (RHSCIR), and the European Multi-Center Study about Spinal
Cord Injury (EMSCI). We compare the registries’ focuses, data platforms, advanced analytics use, and im-
pacts. We also describe how registries’ data can be combined with electronic health records (EHRs) or
shared using federated analysis to protect registrants’ identities. These registries have identified changes
in epidemiology, recovery patterns, complication incidence, and the impact of practice changes such as
early decompression. They’ve also revealed latent disease-modifying factors, helped develop clinical trial
stratification models, and served as matched control groups in clinical trials. Advancing SCI clinical science
for personalized medicine requires advanced analytical techniques, including machine learning, counter-
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factual analysis, and the creation of digital twins. Registries and other data sources help drive innovation in
SCI clinical science.

Keywords: counterfactual; digital twin; personalized medicine; registry; spinal cord injury

Introduction
Spinal cord injury is an incurable condition affecting a

person’s entire life after injury onset. If one is injured

at a young age, there is now a prospect of living 50

years or more with SCI. Before World War II, most peo-

ple who sustained traumatic SCIs had limited survival.

Advances in rehabilitation care pioneered at centers

such as Stoke Mandeville in the United Kingdom1 and

the Spinal Cord Injury Model Systems (SCIMS) Pro-

gram2 in the United States increased the post-SCI life-

span. The role of surgical decompression of the injured

spinal cord, now widely practiced, remained controver-

sial until the 21st century.3 Advances in stabilization at

the injury scene, resuscitation, and earlier operative man-

agement have improved acute survival and neurological

outcomes.4 Efforts were taken to unify care across the

acute injury to rehabilitation phases.

As a result of improved survival, there was a need to

accurately track patients’ recovery and further under-

stand the challenges experienced during the chronic

phase of SCI. Some countries such as Taiwan5 and Scot-

land,6 along with Sweden7 and other Nordic countries

have established national health care and patient regis-

tries that can identify all persons with SCI in the country,

contributing significantly to our understanding of living

with SCI over time.8 Aside from longitudinal studies,

Switzerland has applied a census-like strategy to capture

a cross-sectional snapshot of the entire adult population

with SCI in the Swiss Spinal Cord Injury (SwiSCI)

Cohort Study.9 National registries are more challenging

in larger countries, such as the United States, that lack

a universal health care system.

Although a complete national SCI registry does not

exist in the United States, several large data analytic reg-

istries have been developed since 1970,2 providing sig-

nificant samples for analyzing trends in aggregated

data. Optimally, such registries are prospective and fol-

low patients longitudinally, so the data are entered

based on predefined protocols. Such uniform data can

be used to improve clinical care directly (e.g., by chang-

ing practice guidelines), inform those planning clinical

trials to increase their effectiveness and efficiency, mea-

sure health care results, and monitor epidemiological

trends. Further, registries may provide a platform to re-

cruit people with SCI for clinical studies. Guidance for

creating and operating registries in the United States

has been published by the U.S. Agency for Healthcare

Research and Quality.10

SCI registry data sets optimally track individuals from

the moment of injury through their lifespan, although that

is often not feasible. Here, we review four SCI registries

(U.S., Canadian, and European) associated with clinical

trial networks, their contributions to the field of SCI

care, and their limitations. We then discuss advanced ap-

plications in the use of SCI data sets.

Review of SCI Registries
The traumatic SCI data sets are the U.S. National SCIMS

Database and the North American Clinical Trials Network

(NACTN) SCI Registry, the Canadian Rick Hansen SCI

Registry (RHSCIR), and the European Multi-Center

Study about Spinal Cord Injury (EMSCI).11 Each of these

registries has contributed to improving the care of patients

living with SCI and has specific strengths and limitations.

The SCI Model Systems
The SCIMS was founded in 1970 to create a network of

rehabilitation centers across the United States providing

care for patients with SCI.2 The lack of existing care pro-

grams linking acute and rehabilitative care was specifi-

cally viewed as suboptimal. The SCIMS Program was

conceptually influenced by the successes in the United

Kingdom at Stoke Mandeville12 and at the Royal Perth

Hospital in Australia.13 Thus, the program aimed to de-

velop a comprehensive care system linking acute and reha-

bilitative care14 and to stimulate research on the long-term

outcomes of SCI as described in the Federal Register.15 To

achieve this second aim, the program founded the National

SCIMS Database in 1975 to aggregate prospectively ac-

quired data across the network’s sites.16 The funding

for the SCIMS was initially under the Rehabilitation Serv-

ices Administration (RSA), then the National Institute of

Handicapped Research (NIHR), and later, the National

Institute on Disability, Independent Living, and Rehabili-

tation Research (NIDILRR). The SCIMS also provides

competitive funding to the current member centers for in-

dependent and collaborative research studies supported by

NIDILRR. The collected data continually update the data-

base hosted at the National Spinal Cord Injury Statistical

Center (NSCISC) at the University of Alabama at Bir-

mingham. The goals of the database are to explore the de-

mographics of patients with SCI, track outcomes, identify

trends across time, and facilitate research.

The database includes data from 29 centers represent-

ing over 35,000 patients as of March 2021. The SCIMS
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captures data from *6% to 13% of new traumatic

SCIs.17 Data collected includes demographic information

of participants and injury characteristics (e.g., cause of in-

jury, neurological level). Outcomes included are impair-

ment (neurological scores), functional (independence of

daily living, caregiving needs), medical (hospitalization,

physical health outcomes, complications), psychological

(satisfaction with life), employment (employment status,

income), and survival (mortality, cause of death).

As the longest-standing and largest US SCI database,

the National SCIMS Database has tracked outcomes for

several decades after injury, from which trends in SCI

have been documented (e.g., demographics, mechanism

of injury) since the 1970s.17–22 Early in the evolution of

the database, the incidence of complications in special-

ized and non-specialized units was assessed, finding

fewer severe complications, such as pressure sores, in

specialized units.13 The database has also contributed to

the understanding of a broad range of medical and psy-

chosocial outcomes following SCI. These have been

highlighted in several specific publications dedicated to

outcomes from the SCIMS, including in a textbook,23

special issues in the Archives of Physical Medicine and

Rehabilitation in 1999, 2004, 2011, 2016, and 2021,

and in other publications.24 Topics include neurological

recovery,25,26 rehabilitation outcomes,18 and parameters

including the impact of body weight27,28 and other factors

impacting recovery, such as depression and access to

mental health care,29,30 Medicare and Medicaid coverage

changes,31 socioeconomic stress,32 discharge disposi-

tion,33 health literacy, and racial disparities as they re-

lates to SCI care.34 The SCIMS collaborative network

has also been used to examine the treatment of comorbid

conditions, including randomized controlled trials for de-

pression35,36 and hyperlipidemia in people with tetraple-

gia.37 The Model Systems Knowledge Translation Center

generates significant amounts of evidence-based knowl-

edge translation (KT) from research conducted by

SCIMS centers that have contributed to our understand-

ing of SCI38 and also have provided important educa-

tional resources.

The National SCIMS Database has a publicly available

life expectancy calculator for individuals with SCI that is

linked to provisional life expectancy tables according to

major demographic groupings. This comparison empha-

sizes the greatly reduced life span for those with SCI.

The SCIMS also has resources for KT.

Although the SCIMS was conceived to address the

care fragmentation characterized by a separation of

acute care and rehabilitation centers in the United

States,14 this has continued to be an issue limiting care

coordination in the United States.14 With its initial as-

sessment occurring at rehabilitation admission, the

SCIMS has limited detailed prospective data regarding

the acute management of SCI. That data can be bolstered

from administrative sources or from the National Trauma

Data Bank (NTDB).39

The North American Clinical Trials Network
The NACTN was established by Dr. Robert Grossman in

2004 in cooperation with the Christopher & Dana Reeve

Foundation. It aimed to facilitate the translation of neuro-

protective and regenerative therapies in the face of

known organizational, regulatory, and financial barri-

ers.40 Multiple stakeholders contributed to its structure

and registry design, including experts in acute SCI care,

statistics, pharmaceuticals, and rehabilitationists with

outcome measure expertise. Governance standards were

created, as well as a methodology to share data. The

NACTN is an active consortium of tertiary medical

centers with neurosurgical units in the United States

and Canada, as well as dedicated clinical coordinating,

data management, and pharmacological centers.41

Fifteen sites have contributed registry data. Walter

Reed National Military Medical Center and Brooke

Army Medical Center have participated in the

NACTN. The Telemedicine and Advanced Technology

Research Center and the U.S. Army Medical Research

Acquisitions Activity have provided important finan-

cial support.

The goals of the NACTN include developing clinical

trials and performing research into the early management

and outcome of acute SCI as defined through the registry

methodology. The current prospective registry of 1017

patients supports these goals. Each entry captures a pa-

tient’s demographics, injury characteristics, treatment,

complications, discharge disposition, and neurological

and functional outcomes up to 1-year post-SCI. Events

related to transfer from other centers, triage, and surgical

timing are captured in detail. These clinical data are used

to assess longitudinal epidemiological changes in injury

and recovery pertinent to the NACTN’s patient popula-

tion, define best practices for acute SCI, develop new an-

alytics methods,42 and provide matched control data sets

for clinical trials.

The NACTN has contributed to our knowledge of the

acute phase of SCI, documenting events and interven-

tions immediately after SCI and during hospitalization.

Several NACTN accomplishments were reported in the

Journal of Neurosurgery special issue in 2012.35 In sep-

arate articles in the present Journal of Neurotrauma

issue, we have described the NACTN’s more recent ac-

tivities, some of which we will highlight here. One of

the first major NACTN reports systematically detailed

the type and rates of complications during acute SCI.31

Subsequent data analyses investigated the effect of

hospital-acquired illnesses, including pneumonia, on

neurological recovery. Pneumonia was determined to

be a disease-modifying factor linked to less neurological

recovery at 6 months,43 a finding consistent with other

1836 KELLY-HEDRIK ET AL.
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prospective studies.44 In a NACTN study, patient and in-

jury characteristics associated with developing pneumo-

nia were determined.45 Notably, the development of

pneumonia, wound infection, and sepsis was not associ-

ated with using steroids, a controversial topic reported

in other studies.46

One central mission of the NACTN is ‘‘to carry out

clinical trials of the comparative effectiveness of new

therapies for SCI.’’ the NACTN thus formed a Therapeu-

tic Selection Committee (TSC) to compare and select

promising therapeutics for clinical trials to undertake

this aim. The TSC aims to conduct an impartial and ob-

jective evaluation of prospective therapeutics, including

drug repurposing candidates, through evidence evalua-

tion and an iterative Delphi process.47 Riluzole, a

sodium-channel blocker approved for amyotrophic lat-

eral sclerosis (ALS) and with potential neuroprotective

effects in acute SCI, was chosen as the first treatment

for study in the NACTN.48 This off-patent, orally deliv-

ered drug offered several practical advantages, including

lower costs and more straightforward regulatory issues.

NACTN centers participated in a prospective, single-

arm, open-label multi-center study of riluzole used within

12 h post-injury that indicated the possibility of improve-

ment in motor scores in the treatment group. To

strengthen the trial design, participants from the

NACTN SCI Registry were closely matched to enrolled

subjects as a control group.48 The Phase I study reported

that oral riluzole was safe with a promising efficacy sig-

nal.49 Important pharmacological findings established

perturbations of drug distribution in the initial weeks

after SCI and were incorporated into the subsequent piv-

otal study.50 Regarding KT, the NACTN has also signif-

icantly influenced the adoption of early spinal cord

decompression.51

Institutional memory and experience are critical to the

success of health institutions through improved decision-

making. NACTN principal investigators include those

with decades of experience who actively mentor new net-

work members. The participation of NACTN study coor-

dinators in both the registry and institutional SCI clinical

trials creates valuable skill sets that can be applied to new

studies.

The European Multi-Center Study About Spinal
Cord Injury Database
The EMSCI Database11 is a prospective, longitudinal co-

hort study founded in 2001 that includes 23 neurorehabi-

litation centers across Europe. The goal of the EMSCI is

to document the natural history of SCI and to examine

investigator-driven research questions.52 Participating

centers send their data to a central data storage at the Uni-

versity of Zurich, where it is queried and cleared. The

registry data includes a standardized set of neurological,

physical, and functional (e.g., 6-min walk test, Spinal

Cord Independence Measure [SCIM]) evaluations at the

time of injury and 4, 12, 24, and 48 weeks later. Assess-

ments of pain, hand function, urology outcomes, and neu-

rophysiological assessments are also collected. The

EMSCI provides annual training workshops for physi-

cians and clinicians to improve data quality, and the

EMSCI has been ISO 9001:2015 certified since August

2010. As of October 2020, over 5000 patients were in-

cluded in the study. The EMSCI is supported by the Inter-

national Foundation for Research in Paraplegia (initial

founding partner), Wings for Life, and the Deutsche Stif-

tung Querschnittlähmung. The EMSCI does not prospec-

tively collect detailed acute care information in its

registry.

EMSCI investigators have contributed to advances in

our understanding of neurorehabilitation—including op-

timizing physical therapy, predicting and quantifying

motor recovery, and retrospective studies examining the

influence of commonly used drugs such as gabapenti-

noids on neurological recovery.11,53 The analysis of

EMSCI data has been used to create algorithms to predict

walking without assistance 1 year after injury based on

baseline characteristics,54 to test walking recovery assis-

ted by the Lokomat robot,55 and to develop stratification

tools improving recovery prediction.56 The EMSCI has

published several recommendations regarding the con-

duct of clinical SCI trials.57 In addition, the EMSCI

serves as a clinical trial network to test the anti-Nogo-A

Antibody therapeutic58,59 and to introduce and validate

new outcome measures such as Graded Redefined Assess-

ment of Strength, Sensibility, and Prehension (GRASSP)60

and the Spinal Cord Ability Ruler (SCAR).61

The EMSCI offers a free, web-based calculator for the

International Standards for Neurological Classification of

Spinal Cord Injury (ISNCSCI), the international standard

developed by the American Spinal Injury Association

(ASIA) and the International Spinal Cord Society.62

The Canadian Rick Hansen SCI Registry
The Canadian RHSCIR is a prospective, observational

registry of traumatic SCI in Canada.63 It has collected

data from over 30 acute and rehab facilities with over

10,600 participants since its inception in 2004. Eligible

patients are approached for consent. Data collected fol-

low the patient’s journey and include sociodemographics,

medical history, injury details (e.g., cause of SCI), diag-

nosis, and neurology variables (i.e., ISNCSCI). The reg-

istry also includes the treatment and recovery course

of the patient: admission and discharge details, proce-

dures (e.g., surgery, intra-operative adverse events), in-

terventions, and outcomes (e.g., SCIM, quality of life,

respiratory function, pain, complications). A community

follow-up is conducted on consenting participants at 1, 2,

5, and 10 years after discharge with the goal of continuing

SCI REGISTRIES 1837
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to follow patients until the time of death.63 For partici-

pants who are missed or do not want to complete the

questionnaires, a minimal data set is collected on all eli-

gible patients at the sites using medical chart abstraction

and administrative linkages.

The data from the registry have been used to explore

many clinical and research questions in both longitudinal

and cross-sectional studies and to identify potential re-

search participants from within the database. RHSCIR

investigators examined predictors of functional indepen-

dence, mental health, and life satisfaction,64 predictors of

severe spasticity,65 and neurological outcomes66 follow-

ing SCI. Given observed heterogeneity in outcomes, a de-

cision tree for initial stratification of patients into groups

for clinical research, including the AO spine fracture

classification, was developed using the registry.67 Data

from the registry have also been used to look at outcomes

of subpopulations, including patients with traumatic

cauda equina syndrome68 and the elderly,69 and for com-

paring those who live in a rural area versus an urban

area70 given Canada’s vast rural regions.

A retrospective analysis of data from the RHSCIR net-

work indicated a benefit in motor score recovery associ-

ated with early surgery (<24 h).71 After surveying the

opinion of Canadian surgeons regarding who should re-

ceive early spinal decompression surgery and actual per-

formance data from the registry, a disparity was

observed, mainly accounted for by administrative factors

such as triage and transfer delays from outside hospi-

tals.72,73 This registry has contributed to identifying

knowledge gaps and assessed the logistical feasibility

of recruiting participants to therapeutics clinical trials.74

RHSCIR sites have also been part of clinical studies

such as the Canadian Multicentre CSF Monitoring and

Biomarker (CAMPER)75 (ClinicalTrials.gov Identifier:

NCT01279811) Study and, more recently, the Canadian-

American Spinal Cord Perfusion Pressure Monitoring

and Biomarker (CASPER) Study (ClinicalTrials.gov

Identifier: NCT03911492). Using the registry as a frame-

work, the Access to Care Timing Model seeks to identify

significant gaps in SCI care and delivery in Canada.76

More recently, the importance of non-traumatic spinal

cord dysfunction (NTSCD) has been recognized. In 2020,

RHSCIR rehabilitation facilities began collecting data on

patients with NTSCD to better understand the epidemiol-

ogy, patient journey, and care. Canadian researchers de-

veloped an algorithm using Canadian Institutes of

Health Research administrative health data to identify

cases of NTSCD.77 The use of an NTSCD algorithm is

being explored to supplement NTSCD data in the

RHSCIR, given the difficulty of identifying eligible

cases. This approach could inform the patient journey

for diagnoses such as degenerative cervical myelopathy,

a population that increasingly represents nearly half of

SCI.78,79 Advanced data analytics tools such as machine

learning have been applied to the patient-level data to de-

velop a more accurate algorithm to predict post-SCI mor-

tality.80 In terms of tools and KT, Praxis has developed an

ISNCSCI Algorithm (similar to the EMSCI), which is

used to enhance the quality of ISNCSCI data in the

RHSCIR and is also used by other SCI registries (e.g.,

the SCIMS). To enhance KT, sites receive reports (oper-

ational and clinical) twice yearly, calls are scheduled to

review them, and an annual report is produced.

The Value of SCI Networks and Registries
Together, these four North American and European reg-

istries have contributed significantly to research and clin-

ical practice concerning the prognosis, management, and

longer-term outcomes of patients with SCI. This has in-

cluded identifying the evolving characteristics of the

SCI patient, the ability of health care systems to treat

these patients, and engaging researchers, clinicians, gov-

ernments, health care companies, and society to achieve

improved outcomes. Notably, the data have been impor-

tant for prognostication in the clinical setting. Some prog-

nostic factors may be unmodifiable, such as patient age or

severity of the injury. Others are potentially actionable to

improve the recovery trajectory,81 such as the timing of

surgery,51 prevention of complications,43 timely and ad-

equate rehabilitation, and social support.

In establishing recovery benchmarks, the registries

have also helped to determine clinically meaningful clin-

ical trial outcomes. For example, data compiled from the

NACTN, SCIMS, and EMSCI have been used to set

benchmarks for outcomes 6 months after traumatic tho-

racic SCI as a comparison group for an early phase indus-

try trial.82 Data from the SCIMS and EMSCI contributed

to developing suggested outcome measures for Phase II

clinical trials for patients with ASIA Impairment Scale

(AIS)-A designation SCI.83 As evidenced by these exam-

ples, there have been times when registry and industry

teams have worked collaboratively to determine answers

to clinical and research questions to improve SCI care. In

their role as clinical networks, they have supplied critical

and sustained infrastructure. As the amount and nature of

data are constantly evolving in medicine, it is reasonable

to reflect on how these registries and networks—or data

sets—could evolve in parallel.84,85

Other Registry Data Sets
Our review is not intended to include all reported regis-

tries exhaustively. In 2011–12, the World Health Organ-

ization, in cooperation with the International Spinal

Cord Society, published a detailed global survey of inci-

dence, prevalence, and injury causes,86 and several other

national and regional registries exist.87–90 In China, a net-

work initiated by Dr. Wise Young has supported thera-

peutics clinical trials.91 Likewise, registry data are

1838 KELLY-HEDRIK ET AL.
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globally underrepresented in low- and middle-income

countries, with inroads being made in the Middle East

and Africa.92,93 Several spinal surgery registries seek to

inform the cost-effectiveness, safety, and efficacy of in-

terventions.94 The Transforming Research and Clinical

Knowledge in Spinal Cord Injury (TRACK-SCI) Program

at University of California, San Francisco published data

on 160 participants85 and on the clinical implementation

of an SCI blood pressure support protocol.95 Several stud-

ies have utilized the American College of Surgeons

Trauma Quality Improvement Program (TQIP) to assess

performance questions and complication risk factors in

acute SCI.96,97 TQIP has defined SMART goals as perfor-

mance measures, including being Specific, Measurable,

Achievable, Relevant and realistic, and Timely.

Clinical Trials Versus Registries as Data Sources
Data curation and real-time surveillance for inconsisten-

cies are generally more limited in registries than in clin-

ical trials employing professional contract research

organizations (CROs). The Institute of Medicine published

the workshop ‘‘Assuring Data Quality and Validity in

Clinical Trials for Regulatory Decision Making,’’98

and the U.S. Agency for Healthcare Research and Qual-

ity has published a manual describing common sources

of registry data error.99 Ideally, procedures to ensure

registry data quality are applied at the local enrollment

site and centrally at the coordinating center and data

repository.100

The Sygen clinical study is an exemplary trial with sig-

nificant contributions to the SCI field through extensive

data-sharing.101,102 However, it is important to under-

stand the differences between who is enrolled in regis-

tries and clinical trials. Registries typically have fewer

exclusion criteria, such as age and comorbid conditions,

than clinical trials and are thus more representative of

the injury spectrum. Trials enroll a restricted subset of

the SCI population according to criteria optimized for

the trial goals. Clinical trial participants in the placebo

and treatment groups may not be representative of patients

not enrolled in trials if they have received special treat-

ment. For example, in the Sygen trial, all patients received

steroids, a care standard at that time, yet the data are often

treated as if equivalent to a non-treated placebo group.

In some instances, clinical trial data are not made ac-

cessible for sharing, limiting the study’s impact, even if

negative. This is an ethical problem because clinical trials

utilize public resources and have a reporting responsibil-

ity to their enrolled participants.103 Clinical trials funded

by the National Institutes of Health are required by fed-

eral statute to register and report their results using Clin-

icaltrials.gov. Since 2007, industry-sponsored studies

regulated by the U.S. Food and Drug Administration

also have mandated reporting requirements. Registry

data could contribute to decisions by regulatory authori-

ties if there is adequate data quality assurance, data pro-

tection, and well-defined consent regarding data uses.104

As a clinical trial network, the NACTN has conducted

clinical trials with close CRO oversight and auditing,105

as well as enrollment in the registry, but participants

are not double-enrolled. When both a clinical trial and

registry are running in parallel, patients not meeting the

criteria for trial inclusion may be enrolled in the registry,

which may create a selection bias. The resources and ex-

pertise to achieve complete follow-up are usually greater

when participants are enrolled in clinical trials. Further,

the hypothesis of a clinical study is established a priori,

whereas in registry studies hypotheses are often explored

after data are collected. Thus the ability to draw causal in-

ferences from registry data may be more limited.106

Registries and Care Standards
The data sets discussed herein derive from networks with

a general consensus regarding optimal care practices, rec-

ognizing these may be in evolution and apply to different

post-injury time frames. Within the NACTN, compliance

to optimal care practices is not systematically tracked as

registries usually do not monitor individual institutions.

However, it is possible in those networks tracking acute

care to generally assess performance regarding bench-

marks such as the timing of surgical decompres-

sion,51,71,107 blood pressure support,108 incidence of

complications,96 time to tracheostomy,109 and triage

and transport times to definitive care.110 Registry data

could contribute to decisions by regulatory authorities

if there is adequate data quality assurance, data protec-

tion, and well-defined consent regarding data uses.104

Limitations of Registries
One factor to consider is that registries are voluntary, and

agreement to participate and commit to follow-up may

influence the inclusion of participants due to language,

culture, and socioeconomic variables. Barriers to clinical

trial participation have been described by the National

Academies of Sciences.111 Richard-Denis and colleagues

studied for differences between patients who either

agreed to enroll in the RHSCIR or refused, and the inves-

tigators found higher morbidity, older age, and less fre-

quent medical follow-up in those who declined.112 In the

previously mentioned SwiSCI Cohort Study, those declin-

ing participation were more likely to have a non-traumatic

injury and to be older.113 The potential underrepresenta-

tion of minorities may also influence the generalizability

of data from registries.114

Demographic representativeness was assessed by com-

paring the National SCIMS Database with the Uniform

Data System for Medical Rehabilitation (UDSMR), a

data set capturing a high proportion of all rehabilitation

admissions in the United States, and the SCIMS
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demographics did not differ meaningfully from the

larger population.115 NACTN centers registry participa-

tion is likely more difficult for those living rurally and

those who receive care in non-academic centers. Gener-

ally, sophisticated U.S. database studies have tended to

be performed on data primarily drawn from regions as-

sociated with prominent academic centers.116 Multi-

national registries such as the EMSCI that span different

nations and jurisdictions have complex challenges to

balance representation and generalizability. However,

the differences in administrative and clinical standards

may provide insight into the potential impact of differ-

ent medical systems and SCI care environments on clin-

ical outcomes. Differences in demographics, health

insurance, acute care policies, and rehabilitation stan-

dards may influence outcomes. As in other conditions,

center effects may exist.117

Looking to the Future: Registry Evolution
and Advanced Data Methodologies
Digital information is vastly easier to share than paper-

based records, although the risks of disclosing sensitive

information require identity protection. It can also be

configured to facilitate data searching, retrievals, and

analysis. Additional levels of organization and classifica-

tion are required for data mining approaches.

Harmonized Data Sets and Data Sharing
Predictive power is increased by larger numbers of obser-

vations.51 Data aggregation requires interoperability,

such as harmonized data dictionaries and data fields be-

tween differing sources. Ideally, data across registries

would be readily comparable118 For example, interna-

tional standards for the neurological exam have been cru-

cial to allowing comparability between registries.119 One

effort to standardize reporting is the International Spinal

Cord Injury Core Data Set120 and the National Institute of

Neurological Disorders and Stroke (NINDS) Common

Data Element project.121 These were developed to align

with the International Classification of Function, Disabil-

ity, and Health (ICF) with input from the International

Spinal Cord Society and the ASIA.

Harmonization efforts have also included mapping the

National SCIMS Database to the ICF.122 Important out-

come measures often undergo evolution, and being able

to compare the prior data obtained using earlier measures

is another important harmonization step. Crosswalks are

algorithms that provide methodologies to match fields in

separate data sets or outcome measures, such as allowing

the Functional Independence Measure and SCIM to be

aggregated for analysis.123

Sharing data between registries in different countries

has complex requirements, especially for personal data

extracted from EHR systems. One methodology to pro-

tect patient data is federated analysis.124 Federated ana-

lytics is a new decentralized paradigm to address data

governance and privacy issues in which the computa-

tional analysis (code) is shared and then run at each

site on encrypted data, with only the analysis results

being shared.125 This methodology prevents the recon-

struction of individual data and has been tested for

multi-site functional magnetic resonance imaging

(MRI) machine learning.126

The Future of Prospective SCI Registries: Will
They Continue To Be Needed?
As we are increasingly immersed in ‘‘real-time, real-

world’’ personalized electronic health record (EHR)

data, it is worth considering whether prospective registry

data sets may eventually become obsolete due to less ex-

pensive alternative sources of similar data. It is important

to understand that prospective registries acquire struc-

tured data according to defined protocols using specifi-

cally trained skilled examiners. In contrast, EHR

searching identifies narrative data that is generally not

structured for research use. In addition, the data retrieval

is filtered through the natural language processing meth-

odology resulting in potential ambiguity.

Registry data labels, such as the ISNCSCI, have ex-

plicit data definitions with verification of the accuracy

and quality of data entry and rigorous follow-up docu-

mentation. Although the registries we discussed may

not be conducted with the level of oversight characteristic

of a major randomized clinical trial, the rigor exceeds

EHR data sets and other sources that force classification

to International Classification of Diseases (ICD)-level

coding based on a synthesis of EHR information by a

coder, generally for the purpose of reimbursement.127

Ideally, registry data are systematically checked for

errors and discrepancies, and it is possible to ask a par-

ticipating center to remediate an error by returning to

the medical record if permissible. This form of correc-

tion may not be possible from de-identified EHR data.

Another distinction is that at registry centers, the same

trained experts acquire and enter the initial data and

optimally conduct the follow-up testing according to

specified protocols.

Real-world data sources are frequently gathered from a

variety of practitioners and settings and lack such valida-

tion. EHR data may contain institutional idiosyncrasies,

necessitating the use of orthogonal data sources to con-

firm a diagnosis.128 High dimensionality129; validity is-

sues130; data bias in algorithm development; ethical

issues of consent, data ownership, and security; and med-

icolegal ramifications for treatment decisions all impact

EHR data analysis.131 Sources of bias that could con-

found SCI research based on EHRs are the need to aggre-

gate multiple potentially differing EHR sources between

SCI centers and across the continuity of care and to deal
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with missing data entries.130 The vast quantity of EHR

data may require machine learning to answer research

and clinical questions, a highly popularized concept132

but one that requires critical scrutiny.133

One advantage of EHR data is the ability to obtain a

large amount of more recent information, given a decay

in the relevance of clinical data over time.134,135 Stanford

University uses EHR data from within the institution to

provide a data-driven clinical consultation tool that is

similar to a retrospective observational study delivered

in a timely, patient-specific manner136 with searches

using ICD codes and unstructured EHR text.137 The

U.S. Department of Veterans Affairs (VA) has a large

population with chronic SCI and extensive searchable

EHRs. These data may be especially important for

study comorbidities.138 Recently, the VA Informatics

and Computing Infrastructure (VINCI) System used the

VA’s EHRs to evaluate the application of a pressure injury

risk tool for over 36,000 individuals.139 In 2018, EPIC in-

troduced Cosmos, a platform for EHR research across nu-

merous institutions, including 167 million patients, that

allows for large-scale studies.140 TheTriNetX network al-

lows international studies using federated analytics in

which propensity analysis and other comparisons can be

executed.141 These real-world data sets may be leveraged

to understand secondary conditions in people with SCI.

In the United States, another alternative data source is the

NTDB, which has mandated reporting of trauma outcomes.

It can be used to examine the impact of systems of care such

as interhospital transfer between different levels of trauma

centers.142 Although registry data are generally de-

identified, probabilistic algorithms are being tested to

link the National SCIMS Database and NTDB to combine

acute and longer-term data and understand the minimum

data required to make this combination reliable, such as

date of injury and zip codes.39 Projects like this demon-

strate how mandated reporting systems and EHR data

can supplement SCI data sets. Integrating registries and

EHR data could be a powerful tool for increasing data

granularity. Adopting SCI-relevant common data elements

may result in improved data harmonization and reliability.

Increased Clinical Trial Efficiency Using
Registry Data
The aforementioned SCI data sets can be queried retro-

spectively for research studies investigating trends in

the natural progression of SCI, given current standards

of care. This is critical to document demographic changes

that may not otherwise be captured and are highly rele-

vant to planning acute and rehabilitative care. Increas-

ingly, registries have been used to identify eligible

research participants, and registry participants could po-

tentially be used as a control group in a clinical trial,143

as was done with the NACTN Phase I riluzole study. Sen-

sitivity analysis can be used to assess the comparability of

the historical control and the treatment group.144 Pocock

first proposed a method for determining differences be-

tween historical and clinical trial data.145 These methods

are suited to Bayesian methodologies in which dynamic

borrowing is of interest for clinical trial design. This tech-

nique varies the weighting of the historical control by

evaluating the heterogeneity between historical and

emergent data sets as controlled by the degree of variance

in a joint probability distribution.146

There are several models for how a longitudinal data-

base could be used to anchor prospective clinical trials.

A master protocol is a study design that allows multiple

studies to be run from a single protocol. These trial

types arose from oncology and relied heavily on molecular

or genetic markers. Master protocols used in oncological

studies include umbrella, basket, and platform trials.147

In umbrella trials, multiple treatments for a single disease

are based on subclassifications of that disease. Different

therapies, for example, would be tested in colon cancer

based on genetic markers of the tumors. Basket trials test

a novel therapeutic on multiple diseases that share some

common underlying factors. In this case, multiple tumors

in different locations in the body may share a genetic

marker (e.g., an oncogene); these would all receive the

same therapy. Although there is emerging research regard-

ing genetic factors and molecular markers associated with

SCI, we are not yet at the point where this knowledge

could be used for a basket or umbrella trial.148

Platform trials, also known as multi-arm, multi-stage

design trials, evaluate multiple interventions over time

with a common control group. Platform trials rely less

heavily on biological markers of disease and therefore

are a more feasible goal for SCI research.148 This allows

interventions to be dropped and another started if efficacy

is not demonstrated. Typically, these study designs have

been used for oncology trials but may be adapted to other

fields, such as neurology. Recently, an adaptive platform

trial for ALS, the HEALEY study, has been initiated.149

One possibility would be for an SCI database to serve as

the ‘‘anchor’’ for a platform trial. Eligible patients en-

rolled in the registry could be identified and recruited

to participate in an intervention (or interventions),

whereas other patients in the registry could serve as a

control group. Advantages of such an approach are cost

and resource sharing, shared statistical planning, and

faster testing of therapeutics.150,151 Platform trials also

encourage collaboration across stakeholders (e.g., indus-

try, researchers, health care workers, patient advocacy

groups) and institutions and—to some extent—necessitate

the establishment of shared goals and values.

Use of Registry Data for Personalized Medicine:
Machine Learning and Artificial Intelligence
New data technologies allow much larger data sets and more

variables to be analyzed to create predictive methods and
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learn new correlations (Fig. 1). Machine learning can be

‘‘supervised,’’ in which the data categories are explicitly la-

beled, or ‘‘unsupervised,’’ where the machine learning iden-

tifies clusters from the unlabeled data. Machine learning

offers the prospect for improved predictions of recovery

based on variables obtained in the acute phase of injury, in-

cluding MRI signal change classifiers.152 In an RHSCIR

study, a combination of neural network and machine learn-

ing decision tree analysis generated a survival algorithm,

the Spinal Cord Injury Risk Score, with superior mortality

prediction compared with the commonly used Injury

Severity Score. Notably, head, neck, and facial injuries

had considerable weight, as did spinal column fractures

with translation.80

Recovery of walking has long been one outcome for

which prognostic models have been refined.54 DeVries

and colleagues153 reassessed the prognostication of walk-

ing recovery using the RHSCIR data set. The accuracy

of an unsupervised multi-variable machine learning algo-

rithm was compared with a previously validated algorithm

that uses three variables.153 Notably, in this analysis, an un-

supervised machine learning approach did not improve

upon the accurate prediction of walking recovery as de-

fined with three previous variables previously.154 This indi-

cates that machine-learning approaches are not necessarily

inherently superior to more conventional analyses.

Digital Twins
Generally, in clinical trial science, we think of treat-

ments per their effect on similar groups but not on any

given individual. As individual variables influencing

neurological outcomes, such as genetic polymorphisms,

are increasingly discovered,155 registries will need to

expand the scope of the data collected, particularly

data required for advanced individual modeling and an-

alytics. The digital twin concept arose in aerospace en-

gineering due to the inability to directly study space

vehicles deployed long-term. The twin could be used

to predict the effects of variously modeled stresses. Dig-

ital twins are virtual patients created by mapping an ac-

tual patient after acute SCI to a cluster of other actual

participants in a large data set containing known predic-

tive variables. Ideally, the digital twin would be sta-

tistically indistinguishable from the real person in

predicting disease outcomes. Many virtual twins of a

patient may be generated and subjected to modeled per-

turbations and in silico simulations to predict the conse-

quences of treatment.156 The twin(s) share the baseline

values of an actual patient, and moving forward in

time, the digital twin could be further trained based on

intermediate outcomes and events. Updating is likely

critical because we increasingly understand that events

such as infections alter SCI recovery trajectory.157

FIG. 1. Traditional and evolving data models. Registry data have been used to inform the natural history
of recovery and epidemiological trends, provide matched controls, and evaluate hypotheses using suitable
statistical models. In the evolving data set, further forms of data are incorporated, including biomarkers.
The data set may be enriched by adding selected EHR information and linkage to other data sets to pool
data for greater power, which may be used for predictive modeling. The data set may also serve as a
control group anchor for sequences of clinical trials, thus preserving the added accruing power. AI,
artificial intelligence; EHR, electronic health record; NTDB, National Trauma Data Bank; MRI, magnetic
resonance imaging.
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If valid, digital twins could reduce the need for placebo

controls and be used to predict therapeutic effects. One

method to create digital twins is to use the series of

unique information and key measures in a registry from

baseline enrollment through serial longitudinal assess-

ments to generate probability distributions. Walsh and

colleagues reported a methodology to predict clinical

courses of patients with multiple sclerosis using a condi-

tional probabilistic neural network in which each sequen-

tial variable measure is determined by the prior in a

Markov chain.158 Another model using a neural network

accurately predicted the need for ventilator support in

pneumonia patients.159

Counterfactual Analysis
Counterfactual thinking asks the question, what would

have happened if? This premise is inherent to the causal

theory of randomization to test the consequences of treat-

ment or control exposure on outcomes in clinical tri-

als.160 Real-world observational data sets as historical

controls can be used to model predicted outcomes with

changes in input variables such as a covariate.161 This

analysis has been used to reanalyze a large random con-

trolled trial data set from which mean group effects were

determined to specify an individual outcome prediction

based on logistic regression modeling using a set of bi-

nary and continuous variables.162 Counterfactual analysis

can also be used to model what changes would have oc-

curred without an intervention, such as a prevention pro-

gram. In the SwiSCI Cohort Study, counterfactual

analysis was used to estimate the labor market participa-

tion for people with chronic SCI if dynamic and temporal

factors were varied. Those found to be important for

returning to work were educational level, the severity

of chronic pain, and functional independence.163

Ethical Considerations for SCI Data Sets
Although data aggregation and sharing can increase ana-

lytical power, including collaborations across institutions

and with industry, close attention to consent, ownership,

and data security is needed. Participants must be con-

sented so that the potential uses of their data are clear

and securely stored and de-identified.164 National and in-

ternational bodies have developed recommendations to

foster clinical trials and observational data sharing

while reducing risks.165 The potential for advanced artifi-

cial intelligence technology to be skewed by unbalanced

demographic representation in data sets requires atten-

tiveness to equitable enrollment.166

Conclusions
Today, data come in many forms that can be used to in-

form and advance SCI care. We have described four dif-

ferent SCI registries and other SCI data sources. In the

United States, the NACTN and the SCIMS primarily

focus on acute injury and rehabilitative settings, respec-

tively. The EMSCI includes several European countries,

whereas the RHSCIR has cooperative interactions within

Canada, facilitated by Canada’s universal health insur-

ance coverage. The NACTN and the EMSCI have pro-

vided platforms for acute therapeutics clinical

trials,59,105 whereas the RHSCIR has emphasized obser-

vational studies.108 The SCIMS has contributed signifi-

cantly to our understanding of living with chronic SCI

in the United States. The NACTN, EMSCI, and SCIMS

have shared data with companies in support of their clin-

ical trial designs.82 Developing additional methods to

share and compare data across registries should increase

analytic power and validity. A larger global picture of

data trends may inform SCI care measures in middle-

income and developing countries.

Registry observational data systems require gover-

nance and administrative methods, data protection and

analysis infrastructure, and methods to check data qual-

ity. Data analytics expertise and collaboration are essen-

tial to maximize data value and to detect previously

unknown linkages between variables.167 The NACTN

captures the highly dynamic acute injury phase and is

useful for assessing parameters related to neurological re-

covery and demographic changes in urban centers of

North America. The NACTN SCI Registry data, acquired

over more than 15 years in the same contributing centers

that have run neuroprotection studies, is an important

foundation for emerging clinical trials. This stable con-

tinuous infrastructure is a critical asset for informing

SCI medical and surgical care.

Transparency, Rigor,
and Reproducibility Summary
This article does not report primary data.

Data sharing
NACTN data may be shared upon appropriate request

and internal review.
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